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Abstract 

In this paper, we have overviewed deterministic and stochastic approaches for the modeling of bio-molecular
reactions in systems biology. We have described and compared different versions of stochastic simulation
approaches towards the modeling of bio-molecular reaction systems, the direct approach and the family of the tau-
leap methods. We also have illustrated differences between different approaches by providing numerical examples
of computational analyses for selected models. Computational examples of application of stochastic simulation
algorithms involved two systems of different interacting bio-molecular species and one model from the area of
ecology, describing interactions between two animal populations. Apart from the direct approach and tau-leap
family of methods, we have also overviewed the so called hybrid algorithm of stochastic simulations, proven to
be very efficient when there are huge differences between reaction rates in the system. 

Key words: stochastic simulation algorithms, direct algorithm, Tau-Leap approximated stochastic simulation algo-
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Introduction

Models in systems biology, describing the dynamics
of interactions between bio-molecules, help to explain
and understand many aspects of biological processes
occurring at the molecular level in cells of living orga-
nisms. There are many classes of models, such as sig-
naling pathways, gene regulation networks, transcription
networks, metabolic networks, protein interaction net-
works, etc., which describe dynamics of evolution and
interactions of populations of bio-molecular species.
Numerous examples for models of bio-molecular systems
have previously been discussed in the literature (e.g. Hat
et al., 2009).

Dynamics in models of evolution of bio-molecule po-
pulations are often described by using the deterministic
– limit approach based on systems of coupled first-order
ordinary differential equations (ODEs) (Hat et al., 2009;
Krishna et al., 2006). Deterministic approach is based on
the hypothesis that population sizes of interacting bio-
molecules are large and as a consequence state vectors
of bio-molecular models can be defined by average popu-
lation size of bio-molecular species (Butcher, 2003).
There are very efficient methods for numerically solving

the systems of differential equations (Butcher, 2003).
Deterministic models are therefore very easy to use.
They also provide unique insights into bio-molecular in-
teractions and help explain many mechanisms of evolu-
tion in systems biology models.

However, it is well known that there are situations
where limitation of the deterministic approach can ham-
per capturing important properties of the system under
study. Most important limitations of deterministic ap-
proach are as follows.
1) Deterministic approach although efficient in terms
of computational load, is not accurate for systems that
contain low-rate reactions. These are most often related
to species occurring in small molecular quantities.
If a system contains bio-molecular species of low cellular
concentration (quantity) then representing this species
in molecular reactions by its population mean can intro-
duce either significant errors in model predictions or
can even change the model’s qualitative properties. 
2) When the behavior of a bio-molecular system is stu-
died for parameter ranges close to bifurcation points
(which correspond to qualitative changes of systems dyna-
mics) then, as mentioned above, limiting to average values
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can cause overlooking important features of the system
dynamics. Also for systems whose evolution significantly
depends on (distribution) of initial conditions, such as bi
stable or multi stable systems, deterministic modeling
may not adequately describe the distributions of system
responses.
3) Deterministic approach ignores stochastic variation
of time responses of the system under study. Investiga-
ting stochastic variation of system trajectories is on one
hand interesting by itself. On the other hand it is well
known that stochasticity in systems biology models has
very important biological/evolutionary meaning (Geva-
Zatorsky et al., 2006) which provides another motivation
for its study.

Stochastic simulation approach is applied in order to
study effects of random fluctuations in numbers of mole-
cular species in systems biology models. Stochastic si-
mulations algorithm (SSA) for interactions of bio-mole-
cules was first proposed by Gillespie (Gillespie, 1976)
for simple models of chemical reactions. Gillespie’s idea
of stochastic simulation is to record changes in bio-mole-
cular species sizes vector over time, following from sub-
sequent occurrences of different reactions. In each step
of the simulations, random draw of the reaction to occur
next is done on the basis of the value of reaction propen-
sities. Gillespie’s paper led to the generation of a num-
ber of subsequent literatures (e.g. Chatterjee et al.,
2005; Cao et al., 2006). The original idea was developed
by improving its computational efficiency and by fitting
the structure of the algorithm to the specific properties
of the analyzed system.

This paper is aimed as a survey devoted to (i) des-
cription of deterministic and stochastic approach to
modeling of bio-molecular systems, (ii) comparison bet-
ween deterministic and stochastic approach, (iii) compa-
rison and applicability study of different versions of sto-
chastic simulations approach to modeling of bio-mole-
cular systems. Survey papers devoted to variants of Gil-
lespie algorithm have already appeared in the literature
(Meng et al., 2004; Pineda-Krch, 2008). When compared
to the existing literature surveys, our paper is more
general in the following sense: (i) we illustrate differen-
ces between different approaches by providing numeri-
cal examples of computational analyses for selected
models; (ii) we include wider scope of variants of the Gil-
lespie algorithm, namely apart from direct approach and
tau-leap family of methods, we also overview and present

computational example for the so called hybrid algorithm
of stochastic simulations (Haseltine and Rawlings, 2002),
proven to be very efficient in situations where propen-
sities of reactions in the studied system are of different
orders of magnitude.

The paper is structured as follows. In the section
Models of interactions of bio-molecular species we pre-
sent basic principles of bio-molecular interactions mode-
ling. In the section Deterministic and stochastic simu-
lation algorithms, overview of deterministic and sto-
chastic methods in systems biology is presented. In the
section Computational complexity of stochastic simula-
tion algorithms we discuss problem of computational
complexity of stochastic simulation algorithms. In the
section Computational examples we present exemplary
results of applications of these methods, which provide
a base for quantitative comparisons of different appro-
aches. Finally, in the Conclusion section, conclusions
following from the whole study are summarized.

Models of interactions of bio-molecular species

Before we start a discussion on different approaches
in simulating techniques, we introduce the notations to
be used in subsequent sections. We denote the reaction
that can occur between biomolecules by Rj where j  is
the reaction number. The total number of reactions in
the model is denoted by M. Reactions between biomole-
cules can lead to the disappearance of some types of bio-
molecules and creation of others. 

The history of occurrences of all reactions is summa-
rized by actual numbers of all biomolecules in the sys-
tem or their molar concentrations, called population
state vector. Population state vector is denoted by x (t )
= (x1(t ), ..., xN (t )) where N  is total number of bio-mole-
cular species.

Each reaction is characterized by its propensity co-
efficient, which defines the probability of occurrence of
the reaction. Propensity for each reaction Rj is denoted
by aj (x ) and the sum of all propensities by a 0(x ). Each
reaction Rj is also characterized by a vector vj = (v1j , ...,
vNj), called state change vector, whose component vij de-
notes the change in the number molecules of the species
introduced by reaction Rj .

Reaction rate, Hill model, inhibition, stimulation

The law of mass action (Waage and Guldberg, 1864)
derived by Gulberg and Waage is a basic mathematical
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model of reactions in systems biology. According to this
law, the probability of each reaction event is proportio-
nal to the product of the concentration of participating
reactants. In the deterministic limit, rate of each elemen-
tary reaction is proportional to the product of concentra-
tions of the participating reactants. From the law of
mass action it follows that the increase in concentration
of the reagents will result in an increase of the reaction
rate, while the decrease must result in the slowdown. If
a reagent is “drained out”, the reaction does not occur
apt all. Let us show an example of a reaction of two re-
agents, A and B, which form a complex AB

(1)A B AB+ →

In accordance to the law of mass action, the rate of
this reaction should be expressed as a product of con-
centrations of reactants, denoted by [A ] and [B ], and the
propensity coefficient p,

(2)r p A B= × ×[ ] [ ]

Rates of all reactions contribute to balances of all
masses, which in the simple example stated above has
the form

(3)
d AB

dt
r p A B[ ] [ ] [ ]= = × ×

The product structure given by the above-mentioned
law of mass action is additionally modified by assuming
the possible character of the influence of a bio-molecule
on the reaction rate, stimulation or inhibition. Different
types of influence can be modeled by Hill equation with
appropriate parameters, given below,

(4)r A A
dt

A
k A

n

n n( ) [ ]
=

+

Hill equation model contains two parameters. The
parameter k is interpreted as a dissociation constant or
“half occupation” constant. Depending on the value of
the parameter n in the exponent, called the Hill coeffi-
cient, Hill equation can be a model of positive coopera-
tivity (stimulation effect) of the reactant A in the re-
action, when n takes positive values, n > 0, or negative
cooperativity (inhibition effect), in the opposite case,
where n < 0.

Differential equation models and lists 
of reactions models, SBML

Dynamics in systems biology models can be descri-
bed by using different methods. The most common ap-
proach is based on writing systems of coupled first order
differential equations describing concentrations for each
single species involved in the model by a separate equa-
tion. Such a method allows the researcher to present
even the considerably complex systems in a brief form.
Constructing model with ODEs is usually associated with
a deterministic solution, although there are complex
tools allowing the calculation of stochastic trajectories in
such models. 

Across the literature, we may find many examples of
models of bio-molecular systems written in the form of
sets of differential equations. For illustration, we will fo-
cus on the simple model described in (Hat et al., 2009).
The simple “Toy” model introduced in this paper descri-
bes p 53|Mdm 2 regulatory core of interactions of two
proteins, p 53 and Mdm 2. This model was also used
in further chapters for computational illustration of the
problem of efficiency of different stochastic approaches
for simulation in systems biology models. The “Toy”
model consists of only three components (species), total
p 53, cytoplasmic Mdm 2 (Mdm 2c) and nuclear Mdm 2
(Mdm 2n). The model (Hat et al., 2009) was described
using ODEs. Three appropriate differential equations
were derived, each describing concentration over time
of one of species involved in the model (p 53, Mdm 2c
and Mdm 2n). These equations are presented below,

(5)
d
dt

p m s k p Mdm nd53 53 21 1
2= ⋅ − ⋅ ⋅ ( )

(6)

d
dt

Mdm c n s s
p

s p

k
k

k p
Mdm

2
53

53

53

2 3

3

4
3

1
2

2

= ⋅ + ⋅
+

⎛

⎝
⎜

⎞

⎠
⎟ −

− ⋅
+

⋅

( )
( )

(7)

d
dt

Mdm n k
k

k p
Mdm c

k Mdm nd

2
53

2

2

1
2

2

2

=
+

⋅

− ⋅

The above-mentioned model describes balances of
three interacting proteins and includes reaction rate
laws provided by the law of mass action and Hill models
with different types of interactions.



P. Lachor, K. Puszyński, A. Polański268

Another method to describe models in system bio-
logy is based on listing all reactions and for each reac-
tion defining appropriate rate laws. Listing all reactions
in the system is basically equivalent to writing system’s
equations for balances of volumes of bio-molecular spe-
cies. For the case of the “Toy” model of p 53 and Mdm 2
interactions (Hat et al., 2009), the “list of reactions” mo-
del will assume the following form,

(8)∅ → = ⋅p r m s53 1,

(9)p r k p Mdm nd53 53 21
2→ ∅ = ⋅ ⋅, [ ] [ ]

(10)∅ → = ⋅Mdm c r n s2 2,

(11)∅ ← = ⋅ ⋅
+

Mdm c r n s
p

s p
2

53
533

3

4
3,

[ ]
[ ]

(12)

Mdm c Mdm n

r k
k

k p
Mdm c

2 2

53
21

2

2

→

= ⋅
+

⋅

,

[ ]
[ ]

(13)Mdm n r k Mdm nd2 22→ ∅ = ⋅, [ ]

In the context of the “list of reactions” models, it is
worthwhile to mention the System Biology Markup Lang-
uage (SBML) (http://sbml.org), a standard designed to
ease biological data exchange over different systems and
tools. SBML standard is based on representing list of re-
actions of the type (8)-(13) as .xml files and allows for
fast and efficient exchange of biological data and models
between a variety of software environments. Formula-
ting a model, like reactions (8)-(13), in the SBML format
does not require any advanced knowledge of the XML
schema of the systems uses. There are interactive tools
that help creating SBML models (Swainston and Men-
des, 2009).

Graphical representation

The above-described methods, while good when pre-
paring simulation experiments, may not be comprehen-
sive enough to present/understand the mechanisms of
the system, for a researcher. A valuable help in under-
standing system’s functionalities is the use of graphical
representation. Below, in Figure 1, a diagram represen-
ting interactions  in  the p 53|Mdm 2  regulatory  mecha-

Fig. 1. Diagram of p 53|Mdm 2 regulatory core

nism, modeled by equations (5)-(7), or alternatively by
the list of reactions (8)-(13), is presented. This diagram
illustrates conventions commonly applied in graphical
representations of system biology models. 

From Figure 1, one can observe that in the studied sy-
stem we can find two interlinked feedback loops, positive
and negative. Feedback structure includes p53, in the nu-
cleus, blocking (inhibiting) nuclear import of Mdm2
which in turn enhances (stimulates) p53 degradation in
the nucleus. Additionally, p53 stimulates production of
Mdm2 in the cytoplasm. 

Deterministic and stochastic simulation algorithms

In this section, algorithms for solving/simulating mo-
dels of interacting bio-molecules are presented. As afore-
mentioned, these algorithms can be generally divided
into two categories, deterministic and stochastic.

Deterministic models

Deterministic methods for simulating the behavior
of a systems biology model involve obtaining numerical
solution to ODEs. Well-developed methods for integra-
ting ODEs, which are based on recursive procedures
with adaptively adjusted step size, e.g., Runge-Kutta pro-
cedures, are fast, reliable and applicable even to systems
of high order. 

When a system is modeled by a set of ODEs, insights
to its properties can be gained by a study based on the
system theory computational tools including computing
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equilibrium points, verifying their stabilities, verifying
existence of possible cycles (limit cycles), describing
types of transient processes in the system, checking the
dependence of the behavior of solutions on parameters,
bifurcation points and their types. 

Using the above described analytical as semi-analyti-
cal tools is, however, substantially limited or impossible
in the context of stochastic modeling. The limitations
follow from the fact that in the stochastic case determini-
stic trajectories are replaced by families of probability
distributions. Researching these probability distributions
by stochastic sampling techniques was presented in
the next sections.

Stochastic models

In the deterministic modeling case, there is not
much room for options regarding the quality of simula-
tions, since in the widely used software packages these
options are often set automatically. In contrast, in
the stochastic case, there are several further decisions
for a researcher to make, regarding the structure of
the algorithm and the related accuracy of simulations.
These decisions highly depend on the size of the re-
searched system. Important problem to solve is often
the compromise between the time load of the computa-
tional project and the accuracy of the expected results.
Some of the problems related to stochastic modeling as
well as applicable approaches were also described in
the subsections below.

In 1976, Gillespie published his first paper (Gilles-
pie, 1976) that described an algorithm for simulating
chemical (biochemical) reaction. Purpose of the stocha-
stic simulation algorithm proposed by him was to record
changes in the population vector over time. During each
step of the Gillespie simulation procedure, we need to
decide when and which reaction will occur as the so-
onest. Over the time many variants of original algorithm
were proposed in an effort to improve computational
efficiency while trying to preserve the exactness. 

Exact stochastic simulation algorithms

Exact stochastic methods are valid for small num-
bers of bio-molecules in the system, as they account for
each reaction event in the system separately. Originally,
Gillespie (1976) proposed two methods for exact simula-
tion, First Reaction Method and the Direct Method.
Additionally, we will describe the Next Reaction Method
proposed by Gibson and Bruck (2000) as an improved

version of the First Reaction Method. When considering
the exact solution, we need to take into account that it
may slow down the calculation process significantly,
especially for large systems. 

First Reaction Method

Initialization. In the first reaction method, we start
by initializing the number of reactions Rj , j = 1, ..., M,
(where M is the total number of reactions) and con-
centration of species in population vector x (t ) = (x1(t ),
..., xN (t )) (where N  is the total number of species) at
initial time.

In step 1 of the first reaction method, for each re-
action Rj we draw random numbers rj from the uniform
distribution and calculate the propensity functions aj  (x ).

Step 2. Based on the randomly drawn numbers rj,
we compute the “putative” reaction time tj  for each
reaction Rj, using the following formula:

(14)t
a x

r j Mj
j

j= − ⋅ =
1 1
( )

ln ( ) , ... ,

A reaction which eventually occurs in the simulated
system is the reaction Rμ, whose index is defined by

(15)t t tmμ = min ( , ... , )1

Step 3. For the given R μ we proceed to recording
the time of this reaction by adding the calculated time
step to the current time counter.

(16)t t t= + μ

Next, we proceed to implementing the changes to
the population state vector x (t ) introduced by occurren-
ce of the selected reaction. 

(17)x x v= + μ

If the current time t of experiment does not exceed
the total time of simulation experiment, we proceed to
the step 1 and follow the subsequent steps of the algo-
rithm, otherwise we terminate the procedure.

The First Reaction Method is an exact method for
computing stochastic realizations related to system’s
evolution. However, we need to take into consideration
the fact that in each iteration, we must draw M random
numbers. In addition, we calculate M times the loga-
rithm to compute the putative reaction times. Therefore,
for larger systems consisting of various reactions and
species, decision of using the First Reaction Method can
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result in a significant slowdown of the computational
time. 

Direct Method

In the Direct Method, proposed by Gillespie, the num-
ber of necessary draws of random numbers is reduced.
This algorithm can be divided into four major steps.

Initialization. We initialize reactions Rj , j = 1, ..., M
(where M is the total number of reactions) and con-
centrations of species in population vector x (t ) = (x1(t ),
..., xN (t )) (where N is the total number of species) at
initial time.

Step 1. We draw two random numbers r1 and r2 from
the uniform distribution. Then we calculate the propen-
sity functions aj (x ) for each reaction Rj . After that we
sum all propensities and we denote the sum by a0(x ).

(18)a x a xj0 ( ) ( )= ∑
Step 2. In this step, we determine which Rj will occur

next and the time instant of its occurrence. Using the sum
of propensities a0(x ) we calculate the time step T.

(19)T
a x

r= − ⋅
1

0
1( )

ln( )

The smallest integer j satisfying

a x r a xi
i

j

( ) ( )
=
∑
⎛
⎝
⎜

⎞
⎠
⎟ >

1
2 0

is the index of the next reaction to be executed. 
Step 3. In last step, we compute the time of the next

reaction occurrence, t = t + T and execute the selected
reaction R j by modifying the population state vector x (t )
by adding the vector of state change vj for the reaction R j.

(20)x x v j= +

If the current time of experiment does not exceed
the total time, we go to the step 1 and follow the sub-
sequent steps of the algorithm, otherwise the algorithm
terminates.

The drawback of the Direct Method is that when we
consider a system consisting of (very) rare and frequent
reactions at the same time, the Direct Method, due to fi-
nite precision of random number generators, may lead
to “overlooking” of all (or most) of rare events. This pro-
blem does not appear in the First Reaction Method
which is, however, computationally less efficient as al-
ready mentioned. 

Next Reaction Method

Gibson and Bruck (Gibson and Bruck, 2000) intro-
duced an adaptation of the First Reaction Method impro-
ved in terms of its computational complexity. Improve-
ments were achieved through the re-use of already calcu-
lated propensities. The number of draws of random num-
bers per step was reduced to one. The idea is based on
introduction of the priority queue containing the sorted
putative reaction times. Instead of using the relative pu-
tative time, in this case we use their absolute values.

Initialization. Analogous to the previously discus-
sed methods, we initialize reactions Rj, j = 1, ..., M
(where M is the total number of reactions) and con-
centrations of species in the population vector x (t )
= (x1(t ), ..., xN (t )) (where N  is the total number of
species) at the initial time. Next, the priority queue is
created. In our case, we assume that the queue has the
form of the ascending sorted list. The list includes the
pop method which simultaneously removes and returns
its first element. Next, for each reaction Rj we calculate
the propensity functions aj (x ) using the random number
rj  drawn from the uniform distribution, we determine
the reaction time tj by using the formula,

(21)t
a x

r t j Mj
j

j= − ⋅ + =1 10( )
ln ( ) , ... ,

Finally, we add it to the priority queue. After this
step, the initialization is over and we can proceed to
Step 1.

Step 1. The first element, t μ, from the priority
queue indicates the time at which the first reaction, R μ,
occurs. We pop this element from the priority queue,
proceed to time t = t μ and we implement changes to the
population state vector introduced by this reaction.

(22)x x v= + μ

Step 2. In this step, we focus our attention on the
reactions whose propensities were affected due to the
execution of the Step 1. For each reaction, Ri, from the
affected pool we:
C compute the new propensity and store it in a tempo-

rary container atemp,
C re-calculate the reaction time and permit update on

the priority queue,
C store the new value of propensity ai (x ) = atemp
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(23)( )t
a x
a

t t ti
i

temp
i=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⋅ − +

( )

Once all affected reactions have been updated, we
move to Step 3 and proceed by calculating a new re-
action time for the reaction R μ. To do so, similar to Ini-
tialization step, we draw a random number r μ from
the uniform distribution and compute new occurrence
time of the reaction R μ as the exponentially distributed
random number with mean aμ (x ),

(24)t
a x

r tμ
μ

μ= ⋅ +1
( )

ln ( )

We store the new reaction time t: by pushing it to
the priority queue.

If the current time of experiment does not exceed the
total time, we proceed to the step 1 and follow the sub-
sequent steps of the algorithm, otherwise we terminate.

The above-stated algorithm combines advantages of
the two previous ones. On one hand, it does not overlook
rare reactions, and on the other, by using the queue
mechanism, computational efficiency is improved. This
method performs very well, especially in systems consis-
ting of many reacting species and reactions.

Approximate stochastic simulation algorithms

Algorithms described in previous subsections are
called exact stochastic simulation algorithms, due to
the fact that for each reaction, its exact time instant is
separately drawn by using appropriate pseudo random
generator. However, execution of these algorithms may
be quite time consuming. In order to achieve better com-
putational efficiency, several approximated algorithms
have been proposed. These approximated methods, also
called accelerated methods, were also presented in this
subsection. 

In order to achieve the acceleration, these methods
sacrifice the accuracy of the solution for its better time
efficiency. In the majority of approaches, several reac-
tions occur simultaneously in the coarse-grained time in-
crements. In all accelerated methods, the following Leap
Condition must be satisfied.

(25)( )a x t t tj ( ) [ , ]≈ +const for τ

In other words, each time step (leap) τ must be small
enough, so the changes in the propensities have to be
insignificant.

Basic τ -Leap Method

This method was originally proposed by Gillespie as
an approximate, accelerated procedure for simulating
occurrences of reactions in stochastic models (Gillespie,
2001). The idea is to divide the time scale into steps
(τ-leaps) and to allow for several firings of each reaction
at each time step. In order to successfully apply τ-lea-
ping, we need to use the largest possible value of τ sa-
tisfying the Leap Condition. If τ is set to too small va-
lues, we may slow down the algorithm execution, to 1 or
even 0 firings per step, which will result in the loss of
numerical efficiency.

One way of checking for the best τ is the post leap
check of differences in propensities for each reaction

(26)a x a x j Mj j( ) ( ) , ... ,+ − =λ 1

and then adjusting the leap according to the value of this
difference by increasing or decreasing τ. The post leap
check gives a reliable condition for τ, but clearly this
method might be too time consuming due to the neces-
sity of repeated checking of the post-leap condition.

In his paper Gillespie (Gillespie, 2001) describes
also a pre leap check for best fit of τ. To compute time
step, by using the pre-leap check, we define auxiliary
variables, bij (x ) and ξ(x ), as follows.

(27)b x
a x

x
j M i Nji

j

i

( )
( )

, ... , ; , ... ,= = =
∂

∂
1 1

(28)ξ ( ) ( )x a x vj j
j

M

=
=
∑

1

To predict best τ we assume some specified fraction
ε (0 < ε < 1) as a boundary and we choose minimum
value of τ satisfying the equation below,

(29)τ
ε

ξ
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∈
=∑

min
( )

( ) ( )[ , ]j M
jii

N

a x

x b x1

0

1

In our further review of this algorithm, we can as-
sume that the appropriate value of τ has been estimated.
For the description of the further part of the algorithm,
it does not make a difference, as to which method of τ
estimation was applied. With this assumption, we pre-
sent the structure (stated below) of the τ-leap algorithm.
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Initialization. We proceed by initializing reactions
Rj, j = 1, ..., M (where M is the total number of re-
actions) and concentrations of species in the population
vector x (t ) = (x1(t ), ..., xN (t )) (where N is the total
number of species) at the initial time.

Step 1. We continue by calculating propensities for
each reaction. Using λ = aj  (x ) τ as the mean value for
reaction R j we compute the number of its firings k j by
a random draw from the Poisson distribution with inten-
sity λ,

(30)k e
n

nj

n

= =
−λ λ

!
, , , ...0 1 2

Step 2. We increment the time, t = t + τ and apply
changes introduced by each Rj reaction to the population
state vector x (t ), additionally taking into account
the number of firings of Rj,

(31)x x k vj j
j

M

= +
=
∑

1

If the current time of the experiment does not ex-
ceed the total time, we go to Step 1 and follow the sub-
sequent steps of the algorithm, otherwise we terminate.

The advantage of the above-described algorithm is
its simplicity. However, this algorithm lacks the coordi-
nation of reacting species during single step, which can
lead to a situation where population size of a species can
become negative. Therefore, further improvements of
this method have been proposed, which we describe
below.

Chatterjee τ-Leap Method

The previously described basic approach was bur-
dened with the risk of reaching negative population size,
due to the lack of coordination between reacting species.
The lack of coordination means that a situation can hap-
pen, where the number of firings of a reaction is greater
than the number of available reactants. Chatterjee and
coworkers in their work (Chatterjee et al., 2005) des-
cribe a method which allows for the avoidance of this
case. To coordinate reactions and ensure mass conserva-
tion of the entire reactions network, two mechanisms
are introduced. The first mechanism involves kj

C --
a maximum number of firings of a given reaction Rj, up-
dated constantly between each subsequent firing during
the τ interval. The second mechanism is the additional

vector x-(t ) introduced to track the currently available
reacting population size during the τ time step. Before
the execution of any firing, the currently available re-
acting population size is set to x-(t ) = x (t ). Each change
in the population size introduced by subsequent firings
of reaction Rj  is tracked and applied to vector x-(t ). The
structure of the Chatterjee τ -Leap method is presented
below.

Initialization. We proceed by initializing reactions
Rj, j = 1, ..., M (where M is the total number of re-
actions) and concentrations of species in population
vector x (t ) = (x1(t ), ..., xN (t )) (where N is the total
number of species) at initial time.

Step 1. We continue with calculating propensities
for each reaction and set the initial value of the popula-
tion size change vector.

(32)~( ) ( )x t x t=

Then we compute the actual time step τ as the reci-
procal of a0(x ) (previously defined as the sum of all pro-
pensities) multiplied by a coarse-graining factor f  > 1,

(33)τ =
f

a x0 ( )

After calculating the time leap, we proceed to Step 2
(for each reaction Rj ).

Step 2. 
C we compute the value of k j

C, a maximal number of
possible firings for reaction Rj

(34)k v
x
v

j i N ij
i

ij

•

=
= <

⎡

⎣
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⎤

⎦

⎥
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⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟min ( )

~
,...,1

0

C using random number generator based on binomial
distribution, B (k j

C, p ) ((k j
C) is the number of experi-

ments and p is the probability of the success) we
draw the number of firings kj,

(35)k B k p p
a x

kj j
j

j

= =•
•( , ),

( )
where

τ

C we apply changes to the x-(t ) vector for all vij < 0,

(36)~ ~x x v ki i ij j= +

Step 3. We update the time of simulation (t = t + τ )
and apply the changes to the population state vector
x (t ) for each reaction Rj,
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(37)x x k vj j
j

M

= +
=
∑

1

If the current time of experiment does not exceed
the total time, we proceed to the Step 1 and follow
the subsequent steps of the algorithm, otherwise we ter-
minate the algorithm.

Cao τ-Leap Method

Cao and coworkers in their work (Cao et al., 2006)
propose an optimized approach for tau-leap methods.
They introduce a partition of reactions into two sets, the
set of critical reactions Jc and the set of noncritical re-
actions Jnc. As the critical reaction, they define each re-
action that within a specified number of firings nc is de-
pleting the number of any of the reactants. The purpose
for such partitioning is the fact that the negative popula-
tion typically arises from multiple firings of reactions
that are close to consume all its reactants. To prevent
the occurrence of such a scenario, the algorithm allows
for only one firing from the critical subset during the
specified time leap. Cao’s method is described in detail
below. 

Initialization. We proceed by initializing reactions
Rj, j = 1, ..., M (where M is the total number of re-
actions) and concentrations of species in population vec-
tor x (t ) = (x1(t ), ..., xN (t )) (where N is the total num-
ber of species) at the initial time.

Step 1. We start with partition of all reactions into
two groups, critical Jc and noncritical Jnc by checking
which reaction is about to deplete its reactants in
the range defined by the value of nc using the condition,

(38)min
( )

[ , ]i N

i

ij
c

x t
v

n
∈

⎛
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⎠
⎟
⎟

<
1

We continue by calculating the time leap candidate
Tnc for the subset of noncritical reactions.

(39)
( )T a x

a
x t Tnc j

j
nc= + ≤

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

< ≤

max ( ) ( ) ε

εwhere 0 1

If the value of the calculated candidate is less than
some small multiple (usually 10) of 1/a0(x ) we abort exe-
cution of following steps and for specified number of
times (usually 100) we execute single-reaction steps of

the SSA and return to Step 1. Otherwise if the value of
the candidate is greater, we proceed to Step 2. 

Step 2. Here, we start with calculation of the sum ac

of all propensities over members of the critical subset of
reactions,

(40)a a xc j
j Jc

=
∈
∑ ( )

We generate the second time leap candidate Tc (for
critical subset) as a random draw of the exponential ran-
dom variable with mean value λ = 1/ac (x ),

(41)T Expc = ( )λ

Step 3. From the above, two candidates for time
leap τ we choose the smaller one and treat it as an actual
time leap. In the case where Tc < Tnc single critical re-
action is executed. Reaction is chosen by a random
sample from the subset Jc. We calculate number of fi-
rings kj for reactions from the subset of non-critical re-
actions Jnc by using Poisson distribution with intensity
given by the mean value aj (x ), j 0 JnC.

Step 4. We update the time of simulation (t = t + τ)
and apply the changes in the population state vector
x (t ) for each reaction Rj from the noncritical subset,

(42)x x k v j Jj j
j

M

nC= + ∈
=
∑

1

where

If the current time of experiment does not exceed
the total time, we go to Step 1 and follow the subsequent
steps of the algorithm, otherwise we terminate the algo-
rithm.

Hybrid stochastic simulation algorithms

A group of the stochastic simulation algorithms, cal-
led hybrid stochastic simulation algorithms were deve-
loped for bio-molecular systems that include reactions
with very wide scope of values of propensities of re-
action. The researchers propose that in such a case, fast
reaction can be solved by using differential equations
(deterministic modeling), while for slow reactions the
stochastic simulations machinery is used. This approach
is presented in this subsection. 

Haseltine and Rawlings (Haseltine and Rawlings,
2002) propose a modification of the standard Gillespie
Algorithm resulting in a hybrid method based on partial-
ly solving models with the use of differential equations
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and partially in a stochastic manner. By applying the ap-
propriate partitioning condition, we split all reactions to
two groups, of slow and fast reactions. Clearly, as
the propensity greatly relies on population size, the par-
tition threshold is defined by the number of bio-particles.
Fast reactions are commonly defined as such, for which
we talk about hundreds of thousands of reacting bio-
particles. Such reactions occur very frequently during
simulation (time leap between occurrence is very small),
which allows for approximation of the process by using
a system of coupled first-order ODEs guaranteeing
sufficient precision. In contrast, for slow reactions, the
number of bio-particles is assumed to be of the order of
hundreds or less. These reactions are simulated by using
stochastic random generators. One can notice that there
is an area in between which is difficult to classify as
either of the types of reactions. 

Based on the idea of partitioning reactions into fast
and slow, Haseltine and Rawlings proposed the following
hybrid algorithm.

Initialization. As mentioned before, we proceed by
dividing the reactions into two groups. We describe fast
reactions separately by using ODEs. After that we initia-
lize slow reactions Rj, j = 1, ..., M (where M is the total
number of slow reactions) and concentration of species
in population vector x (t ) = (x1(t ), ..., xN (t )) (where N
is the total number of species) at initial time.

Step 1. We compute the propensities for all slow re-
actions and sum them at given time t.

(43)( ) ( )a x t a x tj0 ( ) ( )= ∑

We proceed by drawing two random numbers r1 and
r2 from the uniform distribution. 

Step 2. We compute deterministic changes by sol-
ving differential equations to the time t + Δt for which
the equation stated below is true: 

(44)( )ln ( ) ( )r a x t dt
t

t t

1 0 0+ =
+

∫
Δ

Step 3. We check which slow reaction R μ will occur
between t and t + Δt and we update properly population
state vector x (t ),

(45)a t t r a t t a t tj
j

j
j

( ) ( ) ( )+ ≤ + < +
=

−

=
∑ ∑Δ Δ Δ2 0

1

1

1

μ μ

If the current time of experiment does not exceed
the total time, we proceed to the Step 1 and follow
the subsequent steps of the algorithm, otherwise we ter-
minate the algorithm.

Computational complexity of stochastic 
simulation algorithms

When describing computational algorithms, it is very
desirable to include estimations concerning their compu-
tational complexity as functions of parameters descri-
bing the size of the analyzed problem. In this section, we
provide some comments on this issue.

All stochastic simulation algorithms which we have
described in previous sections have simple logical struc-
ture. Diagrams of their algorithms, presented in chapter
“Deterministic and stochastic simulation algorithms”
contain only one loop structure. In conclusion, in order
to estimate computational complexity of each algorithm,
one has to estimate (i) computational complexity of one
pass of the loop and (ii) the number of passes of
the loop. 

As for (i), computational operations inside the body
of the loop include, generation of random numbers, se-
lection of one reaction (several reactions) from all pos-
sible reactions, operations related to updating of the po-
pulation state vectors. These three elements can gene-
rally have different computational load, but the third one
(updating of the population state vector) is usually negli-
gible compared to the first two. In different methods
the computational load of the first two operations can
differ. For example the computational load of the one pass
of the body of the loop in the Direct Method is estimated
as O (M ) (Mauch and Stalzer, 2011; Schulze, 2002). 

As for (ii), it is rather impossible to estimate, before
performing some experiments with the system, as to
how many loop executions will the simulation problem
require. 

When estimating time complexity of approximate
algorithm versus exact algorithm, it is possible to pro-
pose some rough estimates by calculating the number of
firings of reaction inside one leap.

Summarizing the above-mentioned comments, we
found basing the estimates of computational complexity
on experimental setup as most practical. When reporting
computational results, we have added data on the time
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of computations and on the number of steps. This makes
comparisons between different methods possible.

Computational examples

In this section, we illustrate methods presented
above by computational examples. We focus our atten-
tion on three different models. The first one is a pre-
viously described model explaining p53|Mdm 2 regulato-
ry mechanisms described in (Hat et al., 2009). For this
model, we compared the Direct Method with two diffe-
rent tau-leap algorithms. The second model describes
infection of a cell by a virus. For this viral infection mo-
del, we additionally performed comparisons of the hybrid
stochastic simulation method to the Direct Method and
tau-leap family methods. The last model, in contrast to
previous examples concerning bio-molecules, describes
a behavior of an ecosystem, more precisely interactions
of two populations, prey and predator. For this Prey-
Predator model, we compared efficiencies of Cao and
Chatterjee implementations of the tau-leap method.

In the computational examples, which are mentioned
below, we present results obtained in the following sce-
nario: first we perform numerous random simulations of
evolution of the studies systems, according to the assu-
med method and with the chosen parameters. On the ba-
sis of performed simulations, we then compare different
methods by comparisons of values obtained by (i) avera-
ging across multiple simulation experiments, (ii) compa-
risons of standard deviations obtained from multiple
simulations experiments, (iii) comparisons of frequen-
cies of occurrences of reactions in different stochastic
simulation algorithms. In this approach, we considered
Direct Method as the “golden standard”, i.e., accuracies
of different stochastic simulation methods were mea-
sured by the distance of the obtained realizations to the
realization of the stochastic evolution process obtained
by using the Direct Method. Apart from the above-stated
comparisons, we have also compared time efficiencies of
different methods.

Model of p53|Mdm2 signaling pathway

The model of interactions of protein molecules p 53
and Mdm 2, is described by the set of first order differen-
tial equations (5)-(7), or equivalently by the list of reac-
tions (8)-(13). For this model, we have performed com-
putational experiments using parameters specified in the
paper (Hat et al., 2009) presented in Table 1.

Table 1. Parameters used in experiment
for simulation of model of p 53|Mdm 2

m 2

n 6

s 1 16

s 2 8

s 3 80

s 4 1 @ 105

k 1 3.5 @ 10!3

k 2 2300

kd 1 1 @ 10!13

kd 2 3 @ 10!3

For the Model of p53|Mdm2 signaling pathway, we
have performed stochastic simulation experiments by exe-
cuting 3000 separate trials per each of the studied me-
thods, “Direct Method”, “Tau-Leap Chatterjee” and “Tau-
Leap Cao”. For both approximate tau-leap methods, their
“run time” parameters were adjusted experimentally,
such that accuracy was optimized without significant loss
in terms of time efficiency. Due to the interlinked positive
and negative feedback loops, we observed oscillations in
concentration of each of the protein species. Oscillatory
behavior of time plots in Figure 2 has biological explana-
tion of directing properly cellular response to DNA da-
mage presented in detail in (Hat et al., 2009).

Reviewing the results depicted graphically in Fi-
gure 2, we noticed that concentrations, particularly for
cytoplasmic Mdm2, oscillate around 3 million bio-mole-
cules. At such high level of concentrations, reactions
occur at a very fast rate. For such systems, mean values
obtained from multiple trials practically do not differ
from the deterministic solution. We noticed that the loss
of accuracy is insignificant in this case. This property is
visible in the graph presenting time plots of signals for
each method drawn in Figure 2, where only with large
“zoom in” we could observe differences between avera-
ges. The results for Cao tau-leap method and the Direct
Method were almost overlapping, while the Chatterjee
tau-leap method provided results with a (slightly) higher
error rate. For both approximated methods, the accu-
racy loss in terms of computational efficiency is insigni-
ficant.

However, with the high accuracy of computational
results obtained by all of the applied methods, we obser-
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Fig. 2. Chart averaged realizations of p 53|Mdm 2 model using exact algorithm (red) and two approximated tau-leap methods:
Cao (green) and Chatterjee (blue). In upper-right corner, we see a large “zoom-in” where we can observe differences between

averaged results

Table 2. Summary of averaged results
from 3000 realizations per single method

Algorithm
Direct

Method
Cao 

Tau-Leap
Chatterjee
Tau-Leap

Parameters epsilon = 0.5 f = 2000

Average time (s) 13.2728 0.1534 0.157

Average number
of steps per trial

33498160 8855.87 16745.01

ved significant differences in their time efficiencies. To
calculate single trial with exact stochastic method,
around 13 seconds were required, while for both appro-
ximate methods simulation takes around 150 millise-
conds. These results are summarized in Table 2, where
apart from mean times of simulations, mean numbers of
steps per one experiment for each of the methods is also
reported.

Viral infection model

The second model describes a simple network of
a viral infection of a cell (Haseltine and Rawlings, 2002).
The model consists of three species: viral structural
protein (S) (48) and two copies of viral nucleic acids,
template (T) (46) and genomic (G) (47). The determini-
stic dynamics of interactions of these species is descri-
bed by the following system of differential equations:

(46)
dT
dt

k G k T= ⋅ − ⋅1 2

(47)
dG
dt

k T k G k G S= ⋅ − ⋅ − ⋅ ⋅2 1 4

(48)
dS
dt

k T k s k G S= ⋅ − ⋅ − ⋅ ⋅5 6 4

Initial values of reactants are as follows: T = 1, G = 1,
S = 1. These values are understood as numbers of inter-
acting molecules. As for parameters, their values were
obtained from the paper (Haseltine and Rawlings, 2002)
and are reprinted in Table 3.

Table 3. Parameters used in experiment
for simulation of model of viral infection

Parameter Value

k 1 0.025

k 2 0.25

k 3 1

k 4 7.5 @ 10!6

k 5 1000

k 6 1.99
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We used this model to present the effectiveness of
stochastic simulation algorithms with regard to the idea
of the hybrid method. Reactions described in model are
partioned into two sets, slow (treated in a stochastic
way). As slow reactions in equations (46)-(48), we treat
all reactions influencing directly concentration of viral
nucleic acids. This means that evolutions described by
equations (46) and (47) are modeled by using stochastic
simulation algorithms. In contrast, evolution governed
by equation (48) describing viral structural protein was
calculated using the deterministic approach.

The total time of single experiment was set to 200
days. For each applied method, we executed 5000 ex-
periments and generated mean results. Below we pre-
sent outcomes for 4 different methods as graphical plots
of signals, along with the table presenting calculation
time for each method.

As in the previous example, in this case, exact sto-
chastic method is rather inefficient in terms of the time
consumption. Single experiment is computed for ap-
proximately 6.5 seconds. Both approximate tau-leap me-
thods proved that the model can be calculated in more
efficient manner while still preserving accuracy of the re-
sults. We noticed that results obtained for Chatterjee
algorithm are more accurate (Fig. 3) in comparison to
Cao method in terms of outcome of exact solution. In
addition, we found performance increase in the calcula-
tion time. Still partitioning of the model into two subsets
of slow and fast reactions allowed us for further optimi-
zation. For hybrid method, we observed that the results
obtained by us are almost overlapping with the exact
algorithm. 

Prey-Predator

(49)
dN
dt

rN N
k

a N
N

P= ⋅ −⎛
⎝⎜

⎞
⎠⎟

−
+

⋅1
1 ω

(50)
dP
dt

P c aN
N
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+

−
⎛

⎝
⎜

⎞

⎠
⎟

1 ω

Although our previous examples focused around mo-
dels describing behavior of bio-molecules, in the last ex-
ample, we performed a comparison of approximated me-
thods in the Prey-predator model describing an eco-sys-

Table 4. Summary of averaged results
from 5000 realizations of per single method

Method Parameters
Total
time
(s)

Average
time
(s)

Direct 
Method 32410 6.482

Cao 
Tau-Leap epsilon = 0.9 3347 0.669

Chatterjee 
Tau-Leap f = 1500 216 0.043

Haseltine-
-Rawlings

deterministic step = 1
stochastic step = 0.01 669 0.134

tem (Pineda-Krch, 2008). The model is given by two dif-
ferential equations describing rates of change of sizes of
populations of prey’s (N ) (49) and predator’s (P ) (50).
Due to its construction this model presents additional
possibilities in analysis of accuracies of the approximate
stochastic algorithms versus accurate ones. We noticed
that the prey population is bound by the value of para-
meter k (49), also we could see that predator’s birth and
death rates are dependent on the current predator’s den-
sity. In the case of the deterministic realization for
the chosen parameters, we observe un damped oscilla-
tions for both of the signals, but in the case of stochastic
methods there is a possibility of occurrence of a situ-
ation in which all predators become extinct. This leads
to the state where predators population remains empty
and preys density gradually stabilizes at a fixed value
determined by the parameter k. In stochastic simula-
tions, we observed the occurrence of extinction of pre-
dators with probability one, provided that simulation
time was long enough. Averaging over many stochastic
simulations led to interesting results, depending on the
simulation method used, the pattern of “averaged”
oscillations changed. The model is an interesting
example of the analysis of accuracy of approximated me-
thods, as we can compare different modes of oscillations
suppression.

To perform the experiment, we collected data from
5000 separate trials of each method. The total simula-
tion time per a single trial was set to 100 time units.
Parameters and initial condition values can be found in
Table 5. 

In Table 6, we have reported results of two different
tau-leap approximate methods. We noticed that results
for both Cao (Cao et al., 2006) and Chatterjee (Chatter-
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Fig. 3. Time plots of concentrations of protein and viral species obtained by using different stochastic simulation methods
(Viral infection model)

Fig. 4. Plot for prey population – different realizations
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Table 5. Parameters used in experiment
for simulation of prey-predator model

N 1000

P 100

r 1

k 1000

a 0.007

ω 0.0035

c 2

g 2

Table 6. Summary of results for different methods. In column
A, we present average computation time for single simulation.
In column B, we report averaged number of steps, plus stan-
dard deviation for those numbers in column C. In the last co-
lumn D, we report information on reaction averaged differen-
ces of number of occurrences of reactions between the ap-

proximate and exact method of stochastic simulation

Method Parameter A B C D

Direct
Method

1.96 286334 58%

Cao epsilon = 0.2 0.55 38663 37% 8%

Cao epsilon = 1 0.1 3829 336% 32%

Chatterjee f = 15 0.39 20450 29% 7%

Chatterjee f = 23 0.23 11336 17% 33%

jee et al., 2005)  methods strongly depend on the choice
of their “run time” parameter, both in terms of time
consumption and quality of calculated results. We also
noticed that average time needed to perform a single
trial using exact stochastic method took around 2
seconds while for both approximate methods it oscillated
around 500 milliseconds. With the increase in the value
of parameter epsilon in the Cao method we observed
reduction in the calculation time but also great loss of
exactness which can be seen in Figure 4. The same
situation was observed for Chatterjee method when we
increased the value of the parameter f. Additionally,
Table 6 reports information about average number of
steps and standard deviation (between different simula-
tions) for those numbers. We have also collected infor-
mation on the average differences of the number of re-
action occurrence for each of the approximate methods
compared to the realization obtained by using the exact
method. In both cases where we sacrifice exactness to
increase calculation performance (changes in method

call parameters), we notice (in Fig. 4) the lack of oscilla-
tion suppression especially in the case of Cao implemen-
tation of approximate simulations. For this experiment,
best results were those obtained for Cao algorithm. 

Conclusion

There is a great interest in using stochastic algo-
rithms for simulations in system biology models. How-
ever, several problems, particularly those concerning com-
promises between computational efficiency and exactness
of results, have been reported in the previously published
literature.

In this paper, we have surveyed existing methodo-
logies for simulating systems of interacting bio-mole-
cules. We have discussed their advantages and draw-
backs and we have demonstrated computational exam-
ples of their applications. 

Our computational examples, developed for rather
simple systems of interacting biomolecules, confirm that
the proper choice of the stochastic simulation method as
well as proper tuning of the parameters of the method,
may be very important for the obtained results. 

Implementing different methods of stochastic simu-
lations and comparing their outcomes seems like a good
strategy. Distributions of simulation errors can be obtai-
ned by repeated multiple simulations. Comparisons of
outcomes of different methods can provide knowledge
on the exactness of solutions and on the reliability of
obtained results.
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