
             BioTechnologia                                    vol. 95(3)  C  pp. 203-214  C  2014       
               Journal of Biotechnology, Computational Biology and Bionanotechnology REVIEW  PAPER

Genetic predisposition to breast and/or ovarian cancer
– focus on the candidate BARD1 gene

KATARZYNA KLONOWSKA 1,  MAGDALENA RATAJSKA 2,  MARZENA WOJCIECHOWSKA 1,  PIOTR KOZLOWSKI 1*
1 European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

2 Medical University of Gdansk, Gdańsk, Poland

* Corresponding author: kozlowp@yahoo.com

Abstract

Germline mutations affecting the BRCA1 and BRCA2 genes explain 16-40% of breast and/or ovarian cancers ag-
gregated in families. Besides the BRCA1/2 genes and several genetic factors associated with hereditary syndro-
mes which increase the risk of breast cancer, a considerable fraction of potential breast cancer predisposing
factors (-50%) remains unknown. It is presumed that candidate genes, functionally related to the BRCA1/2 genes,
may account for some of the missing heritability. The BARD1 gene, which encodes a protein indispensable for
BRCA1-mediated tumor suppression function and adequate apoptosis regulation, serves as a candidate breast
cancer susceptibility gene. Some initial reports indicated that BARD1  is a plausible target for several pathogenic
mutations associated with increased breast and/or ovarian cancer risk. Nonetheless, further mutational studies
are necessary to determine the penetrance and role of the BARD1 gene in cancer predisposition.
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Introduction

Breast cancer is the most frequent cancer and the
primary cause of malignancy-associated deaths among
women worldwide. Ovarian cancer, which frequently co-
occurs with breast cancer in familial setting, is the fifth
most common cancer (constitutes -5% of all registered
cancer cases) and the fourth leading cause of death attri-
buted to cancer (constitutes cause of -6% of cancer-rela-
ted deaths) among Polish women. The highest breast
and ovarian cancers rates are observed in western,
developed countries (http://onkologia.org.pl/) (Youlden
et al., 2012).

There is a number of risk factors associated with
breast cancer. Age (> 40), early menarche (age of < 12),
and late menopause (age of > 54) substantially increase
the risk of breast cancer. Among other factors increasing
the risk of breast cancer are: longstanding hormonal re-
placement therapy, high body mass index (BMI), and
regular alcohol intake. Breast feeding and early age at
first pregnancy are counted as protective factors, where-
as hormonal contraceptives decrease the ovarian cancer
risk and slightly increase breast cancer risk. Familial ag-
gregation of breast cancer cases, especially among first-
grade relatives, are important factors of breast cancer

risk, indicating that genetic factors are essential determi-
nants of breast and/or ovarian cancer risk (Hankinson
et al., 2004; Lux et al., 2006).

Unified paradigms for breast and ovarian cancer etio-
logy are difficult to elucidate. The longstanding exposure
to hormones, as well as the interplay of environmental
and genetic factors, modulate the probability of deve-
loping these complex diseases (Hankinson et al., 2004;
Permuth-Wey and Sellers, 2009). Overall heritability of
breast and ovarian cancer was estimated based on twins
studies (monozygotic and dizygotic) for approximately
30% and 20%, respectively (Lichtenstein et al., 2000).
Familial breast cancer constitutes 5-10% of all breast can-
cer cases. In the middle 1990’s, studies conducted in fa-
milies with strong aggregation of breast and/or ovarian
cases led to the identification of BRCA1 (breast can-
cer 1) and BRCA2 (breast cancer 2) genes (Miki et al.,
1994; Wooster et al., 1995). Germline mutations in
these genes account for 16-40% of familial breast cancers
(Beggs and Hodgson, 2009; Ripperger et al., 2009).
Additionally, about 5% of breast cancer cases aggregated
in family is attributed to mutations in genes associated
with various hereditary syndromes and genes conferring
moderate risk. Finally, it was reported that common
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SNPs cumulatively explain 14% of the familial breast
cancer cases (Michailidou et al., 2013). Other genetic
breast cancer susceptibility factors (-50%) are unknown.
There is a supposition that a fraction of inherited breast
and/or ovarian cases can be attributed to heterozygous
mutations in candidate genetic factors [e.g. BARD1
(BRCA1 associated RING domain 1)], which contribu-
tion to breast and/or ovarian cancer remains to be eva-
luated – Figure 1 (Wooster and Weber, 2003).

Therefore, further investigation of hereditary gene-
tic alterations which predispose to breast and/or ovarian
cancer could reveal a fraction of missing heritability of
breast and/or ovarian cancer and consequently may un-
cover new models for inherited susceptibility evaluation
and contribute to the development of targeted preven-
tive strategies (Manolio et al., 2009).

Hereditary cancer syndromes

The majority of cancers are sporadic. Sporadic can-
cer is a complex and multifactorial disease that is acqui-
red owing to environmental exposures, lifestyle or mul-
tiple genetic factors (variants) of very low risk effects.
A fraction of some cancers (especially breast, ovarian,
and colorectal cancers) occurs in the form of familial ag-
gregations, i.e. is observed in closely related individuals
more frequently than it could be expected based on the
frequency of the cancer in general population. It is esti-
mated that familial cancers constitute up to 15% of parti-
cular cancers. Predominantly, familial aggregation of
cancer cases is attributed to a single loss-of-function
mutation in a specific tumor suppressor gene associated
with a particular cancer type. Among genes, which muta-
tions underlie the most common familial cancer types
are 1) DNA mismatch repair genes [e.g. MSH2 (MutS
homolog 2), MSH6 (MutS homolog 6), MLH1 (MutL
homolog 1)] associated with hereditary non-polyposis
colorectal cancer (HNPCC), 2) the APC (adenomatous
polyposis coli) gene predisposing to familial adenoma-
tous polyposis (FAP), and 3) BRCA1 and BRCA2 asso-
ciated with breast and/or ovarian cancer aggregation.
The identification of these genes was essential for the
understanding of pathomechanism of familial cancer syn-
dromes and laid the foundation for familial cancer gene-
tic diagnostics. Most of hereditary cancers constitute
autosomal dominant disorders that display incomplete
penetrance (Nagy et al., 2004). Inherited cancers are

initiated by the transmission of a genetic mutation in the
germline. However, it must be noted that the risk of the
development of inherited cancer may also be modulated
by lifestyle and environmental exposures as well as other
genetic factors. Multiple cases of genetically associated
hereditary cancers are often aggregated within the fa-
mily and can be related to a particular inherited cancer
syndrome (see Table 1). The probability of the inheri-
tance of cancer predisposition within a family increases
with the number of individuals affected by cancer (Ellis,
2011; Heald and Church, 2011). Inherited cancer sus-
ceptibility can be also associated with the presence of
multiple primary cancers or simultaneous occurrence of
nonmalignant disorders in affected individual (Nagy
et al., 2004). The occurrence of several generations with
numerous cases of the early-onset, bilateral or multi-
synchronous cancers within a family can be counted as
the hallmarks of hereditary cancer syndromes (Heald
and Church, 2011).

Hereditary breast and ovarian cancer

Genetic variants predisposing to breast cancer can
be divided into three major groups according to the
breast and/or ovarian cancer risk conferred by these
variants and their frequency in the population (Fig. 2)
(Foulkes, 2008; Ripperger et al., 2009). Importantly,
a substantial fraction of existing breast and/or ovarian
cancer susceptibility genes with various degree of pene-
trance still remains unidentified (Wooster and Weber,
2003; Karppinen et al., 2004; Beggs and Hodgson,
2009).

The first group of breast and/or ovarian cancer su-
sceptibility variants encompasses rare, high risk hetero-
zygous mutations occurring in genes associated with
several rare hereditary syndromes (Foulkes, 2008; Beg-
gs and Hodgson, 2009). The major genes associated with
susceptibility to hereditary breast and ovarian cancer
syndrome (HBOC) are BRCA1 and BRCA2. Germline
mutations in these genes are associated with the risk of
50-80% and 30-50% for breast and ovarian cancers, res-
pectively. Germline mutations in BRCA1 and BRCA2
genes explain approximately 16-40% of breast and/or
ovarian cancer cases aggregated in families (Beggs and
Hodgson, 2009; Ripperger et al., 2009; Roy et al., 2012).
Other cancer syndromes listed below explain less than
5% of familial breast cancer aggregation. The probability 
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Fig. 1. Pie-chart schematically depicting the genes accounting for familial aggregations of breast cancer

Table 1. Hereditary cancer syndromes

Syndrome Gene
Chromosomal

localization
Mode

of inheritance
Associated cancer References

Hereditary breast 
and ovarian cancer
(HBOC)

BRCA1
BRCA2

17q21
13q12.3

autosomal
dominant

predominantly breast
and ovarian

(Miki et al., 1994;
Wooster et al., 1995;
Nagy et al., 2004) 

Hereditary site-
specific breast cancer

BRCA1
BRCA2

17q21
13q12.3

autosomal
dominant

predominantly breast

Hereditary site
– specific ovarian
cancer

BRCA1
BRCA2

17q21
13q12.3

autosomal
dominant

predominantly ovarian
also: prostate, fallopian

tube, stomach, pancreatic,
laryngeal

Li-Fraumeni
syndrome

TP53 17p13.1
autosomal
dominant

breast, brain,
sarcomas, leukemias

(Nagy et al., 2004)

Hereditary
nonpolyposis
colorectal cancer
(HNPCC)/
Lynch syndrome 

MSH2
MSH6
MLH1
PMS1
PMS2

2p21
2p16

3p21.3
2q31.1
7p22.2

autosomal
dominant

endometrial colorectal,
stomach, ovarian, pancreas,

brain
(Nagy et al., 2004)

Familial adenomatous
polyposis (FAP)

APC 5q21-q22
autosomal
dominant

colorectal, colon, gastric,
pancreatic, adenomas 

(Nagy et al., 2004)

Cowden syndrome PTEN 10q23.3
autosomal
dominant

breast, thyroid, endometrial (Nagy et al., 2004)

Ataxia-telangiectasia ATM 11q22-q23
autosomal
recessive

lymphomas, leukemias,
breast 

(Savitsky et al., 1995;
Khanna, 2000)

Hereditary diffuse
gastric cancer
syndrome

CDH1 16q22.1
autosomal
dominant

gastric, breast
(Berx et al., 1995;

Pinheiro et al., 2010)

Fanconi anemia
BRIP1
PALB2
BRCA2

17q22.2
16p12.2
13q12.3

autosomal
recessive

breast, leukemia 
(Mathew, 2006;

Walsh and King, 2007)

Peutz-Jeghers
syndrome

STK11
(LKB1)

19p13.3
autosomal
dominant

colon, small intestine,
stomach, breast, pancreatic

(Hemminki et al., 1998;
Nagy et al., 2004) 

Nijmegen-breakage
syndrome

NBN 8q21
autosomal
recessive

lymphoma, breast,
colorectal

(Matsuura et al., 1998;
Steffen et al., 2004)
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Fig. 2. The relation between the relative risk (RR) and the
frequency (minor allele frequency, MAF) of genetic variants

in breast and/or ovarian susceptibility genes

of the existence of genes with a population frequency
and conferred risk comparable to BRCA1 and BRCA2
[e.g. predicted BRCA3 (breast cancer 3) gene] is very
low (Narod and Foulkes, 2004; Foulkes, 2008). Li-Frau-
meni syndrome is attributed to mutations in the TP53
(tumor protein p53) gene encoding a protein “genome
guardian” involved mainly in the control of cell cycle pro-
gression, repair of DNA damage, and apoptosis stimula-
tion. Although less than 1% of early onset breast cancer
cases clustered in families harbor germline mutations in
TP53, women affected by Li-Fraumeni syndrome are at
49% risk of developing breast cancer by the age of 60
(Garber et al., 1991; Masciari et al., 2012). For women
with germline mutations in the CDH1 (cadherin 1) ge-
ne, associated with the hereditary diffuse gastric syndro-
me, or in the STK11 (serine/threonine kinase 11) gene,
associated with Peutz-Jeghers syndrome, the risk of de-
veloping breast cancer is approximately 30-40% (Hem-
minki et al., 1998; Pharoah et al., 2001; Lim et al.,
2004). Recently, Tan and coworkers (Tan et al., 2012)
have shown that pathogenic germline mutations in the
promoter of the PTEN (phosphatase and tensin homo-
log) gene associated with Cowden syndrome can incre-
ase the lifetime risk of breast cancer up to 85%. Additio-
nally, hereditary ovarian cancers can be attributed to va-
riants in mismatch repair genes [MLH1 (mutL homo-
log 1), MSH2 (mutS homolog 2), MSH6 (mutS homo-
log 6), and PMS2 (postmeiotic segregation increased
2)] associated with Lynch syndrome (Lynch et al., 2009).

Mutational analyses of candidate genes encoding
proteins co-working with BRCA1 and BRCA2 in the same
molecular pathways led to the identification of a second
group of alterations that confer susceptibility to breast
and/or ovarian cancer. This group comprises uncommon
variants associated with moderate risk of breast and/or
ovarian cancer (Beggs and Hodgson, 2009). It was repor-
ted that mutations in BRIP1 (BRCA1 interacting protein
C-terminal helicase 1), BARD1, RAD50, CHEK2 (check-
point kinase 2), NBN (nibrin), PALB2 (partner and lo-
calizer of BRCA2), and ATM (ataxia telangiectasia mu-
tated) are of intermediate penetrance and are associated
with 2-4 fold increased risk of breast cancer. It is worth
noting that very rare, bi-allelic mutations in breast can-
cer susceptibility genes BRCA2, PALB2, and BRIP1 are
associated with Fanconi’s anemia. This suggests that
some genes controlling DNA repair through homologous
recombination and associated with this mostly recessive
disorder may also contribute to the initiation of breast
and/or ovarian cancer (Walsh and King, 2007; Foulkes,
2008; Beggs and Hodgson, 2009; van der Groep et al.,
2011). Walsh and colleagues observed that mutations in
Fanconi’s anemia genes are involved in the development
of hereditary ovarian cancer. The authors detected pa-
thogenic heterozygous mutations in genes implicated in
Fanconi’s anemia pathway, [e.g. BARD1, RAD50, NBN,
PALB2, MRE11A (meiotic recombination 11 homolog
A), BRIP1, and DNA repair protein gene RAD51C
(RAD51 homolog C)] in a group of patients with ovarian
carcinoma not selected in terms of familial history of the
disease (Walsh et al., 2011). Recently, Cybulski and co-
workers have identified RECQL (RecQ helicase-like) as
a new breast cancer susceptibility gene of moderate pe-
netrance, with the use of the combination of a whole
exome sequencing and a large-scale association study of
recurrent mutations (Cybulski et al., 2015). The RECQL,
similarly as other breast cancer susceptibility genes, is 
involved in DNA repair by resolving stalled DNA replica-
tion forks and thus preventing double-stranded DNA
breaks.

The third group of breast and/or ovarian cancer pre-
disposing variants comprises a common, low-penetrance
polymorphisms, identified mainly in Genome Wide Asso-
ciation Studies (GWAS). Recently, 67 new and previously
reported single nucleotide polymorphisms (SNPs) have
been identified to be associated with a slightly increased
breast cancer risk (odds ratio (OR) -1,2) (Michailidou
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et al., 2013). It was also presumed that the investigation
of a copy number variation may uncover a substantial
part of the still unidentified genetic loci related to the
susceptibility to various complex diseases, including
breast cancer. Until now, very few studies have assessed
the association of CNV with breast cancer risk. Recently,
a common large deletion in the APOBEC3 (apolipopro-
tein B mRNA editing enzyme, catalytic polypeptide-like
3) gene cluster was correlated with an increased breast
cancer risk ([OR] = 1.31 95% CI = 1.21 to 1.42 for one
copy deletion) (Long et al., 2013).

In consonance with the polygenic model, the aggrega-
tion of breast and/or ovarian cases within a family, not at-
tributed to mutations in BRCA1 and BRCA2, can be cau-
sed by a combined effect of multiple genetic alterations in
genes of low to moderate penetrance, presumably modi-
fied by environmental factors (Karppinen et al., 2004).

BRCA1 and BRCA2 – guardians 
of the genome integrity

The proteins encoded by BRCA1 and BRCA2 tumor
suppressor genes work in concert to maintain the ge-
nome integrity through the interaction with a number of
proteins, such as CHEK2, ATM, BARD1, NBN, RAD51,
ATR (ataxia telangiectasia and RAD3-related), p53,
BRIP1, and PALB2. These genes act as guardians of the
genome integrity and are involved in the pathways of
DNA damage response (DDR), the regulation of trans-
cription, cell cycle checkpoints, apoptosis, and ubiquiti-
nation (Narod and Foulkes, 2004; Roy et al., 2012).

Double strand breaks (DSB) constitute a threatening
form of DNA damage, as unrepaired double strand le-
sions often lead to severe genomic rearrangements that
contribute to cancer initiation. The main function of
BRCA1 is to integrate the DSB repair mechanisms and
checkpoint regulation that delay the cell cycle in order
to provide time for DNA repair and to ensure that the
genetic damage is not transmitted to the next generation
whereas BRCA2 is responsible for the core mechanism
of RAD51-mediated homologous recombination which
was developed by mammals as one of the DDR systems
(Hoeijmakers, 2001; Roy et al., 2012).

Mutations in BRCA1 and BRCA2

According to the Breast Cancer Information Core
(BIC) database (http://research.nhgri.nih.gov/bic/), ap-
proximately 3800 various genomic alterations in BRCA1

and BRCA2 genes have been detected so far (data of
July, 2015). Missense and nonsense mutations, as well
as small frameshift insertions/deletions and mutations
affecting splice sites within introns (IVS), account for
the most frequent alterations which occur in BRCA1 and
BRCA2 genes (http:research.nhgri.nih.gov/bic/) (Thom-
pson and Easton, 2004). Large genomic rearrangements
in BRCA1 and BRCA2 have also been identified. It was
reported that large mutations may account from 0% up to
36% of all mutations affecting BRCA1 gene, across various
populations. In BRCA1 gene more than 80 various large
mutations have been found, whereas in BRCA2 gene
much fewer large rearrangements have been reported
(Hansen et al., 2009; Sluiter and van Rensburg, 2011).

It was estimated that mutations in BRCA1 and
BRCA2  genes occur in about 1/400 individuals (Foulkes,
2008). In the majority of populations various mutations
are located along the entire sequence of BRCA1 and
BRCA2. However, in some ethnic groups, owing to a
founder effect, particular mutations in BRCA1 and
BRCA2 occur with higher frequency. A founder effect
can be defined as a loss of genetic variation which occurs
due to interbreeding within a small group of individuals
isolated from a larger group. As a consequence, relati-
vely uncommon mutations become more frequent within
such ethnic group (Ferla et al., 2007). For example in
the Ashkenazi Jewish population, 1 in 40 individuals
(Foulkes, 2008) is a carrier of 185delAG (c.68_69delAG)
(Struewing et al., 1995) or 5382insC (c.5266dupC) (Roa
et al., 1996) founder mutation in BRCA1 or 6147delT
(c.5946delT) (Neuhausen et al., 1996) founder mutation
in BRCA2. In Iceland, a high frequency of founder
999del5 (c.771_775del5) BRCA2 mutation was identi-
fied. This founder mutation was reported to cause the
familial clustering of both female and male breast cancer
cases. It was shown that 999del5 BRCA2 mutation af-
fects 40% of males with breast cancer from the Icelandic
population (Thorlacius et al., 1996). Finally, in Poland,
a high incidence of 5382insC, 300T > G (c.181T > G), and
4153delA (c.4034delA) BRCA1 founder mutations has
been identified (Sobczak et al., 1997; Gorski et al., 2000;
Grzybowska et al., 2000; Gorski et al., 2004; Ratajska
et al., 2008; Brozek et al., 2011). 3819del5 (c.3700_
3704del5) and 185delAG mutations affecting the BRCA1
gene were also reported to occur frequently in the Po-
lish population (Gorski et al., 2000; Ratajska et al., 2008;
Brozek et al., 2011).
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BARD1 as a breast cancer susceptibility gene

Structure and functions of the BARD1 gene 
and encoded protein

BARD1 gene is located at 2q34-35 and consists of 11
exons encoding protein of 777 amino acids. BARD1 was
identified by yeast two-hybrid screening as a protein that
associates with BRCA1 protein in vivo. BARD1 protein
bears a striking structural resemblance to BRCA1 pro-
tein. Both proteins harbor a RING-finger motif and a nu-
clear export signal in the vicinity of their N-termini and
two BRCA1 carboxy-terminal (BRCT) domains. BARD1
and BRCA1 proteins form a functional heterodimer
through the binding of their RING-finger motifs. Apart
from BRCT and RING domains, BARD1 contains three
tandem ankyrin repeats (ANK) located in the central
part of the protein. This structural motif is implicated in
other protein-protein interaction (Wu et al., 1996). Nei-
ther BARD1 nor BRCA1 displays structural resemblance
to BRCA2 (Irminger-Finger and Jefford, 2006).

Besides structural similarity, BARD1 and BRCA1 pro-
teins share some common functions. Increased levels of
these proteins are observed in spleen and testes, as well
as in other proliferative tissues. Additionally, it was shown
that the expression of BRCA1 and BARD1 in breast and
ovaries is regulated hormonally and that the in vitro down-
regulation of BARD1 leads to the alteration of mammary
epithelial cells phenotype (Irminger-Finger et al., 1998).
Both BARD1 and BRCA1 deficiency is pathogenic for the
cell. McCarthy and colleagues observed that BARD1 !/!

and BRCA1 !/! as well as double BARD1 !/! ; BRCA1 !/!

mice display phenotypic similarities. The deficiency of
both BARD1 and BRCA1 leads to the deleterious geno-
mic rearrangements and an early embryonic death which
is attributed to the defective cell proliferation (McCarthy
et al., 2003).

BARD1 forms a heterodimeric complex with BRCA1
through the interaction of domains comprising RING
finger motifs (Wu et al., 1996). A Heterodimeric state is
preferred by BARD1 and BRCA1, because this inter-
action is thought to stabilize both proteins (Meza et al.,
1999) and is required for the nuclear localization of the
complex (Irminger-Finger, 2010). It was shown that
BRCA1-BARD1 heterodimeric complex has the E3 ubi-
quitin ligase activity (Ruffner et al., 2001; Baer and Lud-
wig, 2002; Morris and Solomon, 2004). Although the in-
dividual BRCA1 and BARD1 ubiquitin ligase activity is

very low, it is considerably enhanced after the hetero-
dimerization of the proteins (Hashizume et al., 2001).
It was reported that mutations associated with breast
cancer located in the RING domain of BRCA1 disrupt
the ubiquitin ligase activity of BARD1-BRCA1 complex
and abolish BRCA1 involvement in the mechanisms
responsible for the protection of cell from m-radiation
(Hashizume et al., 2001; Ruffner et al., 2001). It is also
suggested that BRCA1-BARD1 E3 ubiquitin ligase is
implicated in DNA repair and that BARD1 is essential
for BRCA1 tumor suppression functions.

A number of BRCA1-BARD1 targets have been iden-
tified, including CDC25C (cyclin B and cell division cycle
25C) (Shabbeer et al., 2013), m-tubulin (Starita et al.,
2004), and H2AX (Chen et al., 2002). BRCA1-BARD1 E3
ligase was reported to ubiquitinate the proteins that or-
chestrate G2/M cell cycle checkpoint, i.e. cyclin B and
CDC25C, what leads to their degradation and loss of con-
trol over the cell cycle progression (Shabbeer et al.,
2013). Additionally, BARD1-BRCA1 heterodimer can
control centrosome duplication, mediating the destruc-
tion of m-tubulin (Starita et al., 2004). H2AX can also be
ubiquitinated by E3 ligase, what indicates that BRCA1-
BARD1 heterodimer can be implicated in chromatin re-
modeling (Chen et al., 2002).

Ryser and colleagues also observed an interaction of
BARD1 and BRCA2 in mitosis. As full length BARD1
associates with BRCA1 at spindle poles in early mitosis,
BARD1 β isoform (without RING domain), frequently
found in gynecological cancers, interacts with BRCA2 in
late mitosis. Accordingly, BARD1 isoforms have different
functions in mitosis and may functionally associate with
BRCA1 and BRCA2 proteins, which are responsible for
the control of early and late phase of mitosis, respecti-
vely (Ryser et al., 2009).

Besides BRCA1/2-mediated functions, independent
cellular activities of BARD1 were also reported. Irmin-
ger-Finger and colleagues proposed a paradigm of the
“dual mode of action” for BARD1 activity in the cell. The
authors distinguished the survival mode, in which
BARD1 associates with BRCA1 and is implicated in the
DNA damage response, and the death mode in which the
excess of BARD1 over BRCA1, performs pro-apoptotic
functions independently of BRCA1. It was observed that
the interaction of BARD1 and BRCA1 diminishes the
apoptosis induction. The study indicates that the geno-
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Fig. 3. Map of BARD1 mutations identified in patients with breast and/or ovarian cancer. It does not show variants identified
as neutral or of unknown significance, and common SNPs associated with cancers

toxic stress induces upregulation of BARD1. The increa-
sed accumulation of BARD1 has an impact on the stabili-
zation of p53 through the association of BARD1 with p53
and a subsequent induction of apoptosis. Accordingly,
the repression of BARD1 synthesis leads to an impaired
apoptotic response to severe DNA damage (Irminger-
Finger et al., 2001).

Mutations in the BARD1 gene

The mutational analyses of BARD1 in non-BRCA sub-
jects with familial breast and/or ovarian cancer led to the
identification of various BARD1 sequence variants.
These variants include deleterious and potentially dele-
terious mutations leading to premature termination of
translation, disruption of protein structure/function, or
alternative splicing (Karppinen et al., 2004; De Brake-
leer et al., 2010; Sabatier et al., 2010; Ratajska et al.,
2012; Castera et al., 2014; Cybulski et al., 2014; Pen-
nington et al., 2014; Churpek et al., 2015; Couch et al.,
2015; Klonowska et al., 2015) (summarized in Fig. 3).
However, it has to be noted that some results of these
studies are not consistent and inconclusive in terms of
the functional significance of the mutation.

Some germline mutations, including missense, fra-
meshift and silent alterations (Thai et al., 1998; Ghi-
menti et al., 2002; Ishitobi et al., 2003; Sauer and An-
drulis, 2005; Huo et al., 2007) as well as a large hetero-
zygous deletion (1258 bp) within intron 3 of the BARD1
gene (Rouleau et al., 2012) were identified, however
their impact on the protein structure and function is not
elucidated.

The p.Cys557Ser (c.1670G > C) [rs28997576 in
dbSNP database; http:ncbi.nlm.nih.gov/SNP] is the most
commonly studied mutation in the BARD1 gene. Sauer
and coworkers (Sauer and Andrulis, 2005) showed that
a defective growth suppression and impaired apoptotic
functions are attributed to an ectopic expression of
BARD1 affected by the p.Cys557Ser mutation, indica-
ting a possible deleterious effect of this variant.
p.Cys557Ser was reported to slightly increase the breast
cancer risk in Nordic (Finish, Icelandic, Danish, Swe-
dish, and Norwegian) families with breast cancer aggre-
gation (BRCA1/2 positive – OR = 3.2; p = 0.01; 95% CI
= 1.2-8.3; BRCA1/2 negative – OR = 2.6; p < 0.001;
95% CI = 1.7-4.0) (Karppinen et al., 2004; Karppinen
et al., 2006), however this finding was not confirmed by
Vahteristo and colleagues (Vahteristo et al., 2006) who
showed no association of the p.Cys557Ser with familial
breast cancer susceptibility in Finland. Neither has the
p.Cys557Ser mutation been associated with an increased
risk of breast cancer in Australian and Polish populations
(Gorringe et al., 2008; Jakubowska et al., 2008; Johnatty
et al., 2009) whereas in Iceland, Stacey and colleagues
(Stacey et al., 2006) showed a modest increase of the
risk of breast cancer attributed to p.Cys557Ser and de-
monstrated that the risk of breast cancer among carriers
of double mutations in BARD1 p.Cys557Ser and BRCA2
999del5 is significantly increased (OR = 3.11; 95% CI
= 1.16-8.4; p. = 0.046) (Stacey et al., 2006). However, in
studies conducted in different European populations the
role of p.Cys557Ser variant as a modifier of BRCA1/2-
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associated cancer risk has not been confirmed (Jaku-
bowska et al., 2008; Spurdle et al., 2011).

Sabatier and coworkers, identified a homozygous
deletion of the entire BARD1 gene by carrying out an
analysis of an array-based comparative genomic hybridi-
zation (aCGH) profiles of breast cancer tumors from 330
patients with invasive breast adenocarcinoma. An addi-
tional aCGH analysis of DNA from a blood sample of the
carrier of homozygous mutation revealed the presence
of a heterozygous deletion of the entire BARD1 gene.
Interestingly, patients who harbor BARD1 deletion (but
are not affected by BRCA1 mutations) displayed clinico-
pathological features which are specific for a phenotype
associated with mutations occurring in BRCA1 (Sabatier
et al., 2010).

The mutational analysis of BARD1 recently conducted
in BRCA1/2- negative families with breast cancer aggrega-
tion has identified eleven intronic and fifteen exonic germ-
line variants (one in-frame deletion, four silent, one frame-
shift and nine missense mutations). Three of these va-
riants, i.e. p.Ile509Thr (c.1526T>C), p.Glu652fs (c.1935_
1954dup) and p.Arg658Cys (c.1972C>T) have been
shown to predispose to breast cancer and to co-segregate
with the disease phenotype in the analyzed families. On
the basis of in silico predictive analysis it was evaluated
that the p.Ile509Thr missense variant, located within the
ANK domain, causes the protein instability and impro-
per protein folding. The p.Arg658Cys variant was found
to have a “possible effect on function” based on protein
modeling. Last but not least, de Brakeleer and collea-
gues have identified a novel protein truncating mutation,
p.Glu652fs, which results in a loss of the entire second
BRCT domain of BARD1, which may result in a defective
DNA damage response (De Brakeleer et al., 2010).

Ratajska and colleagues conducted screening of
germline variants of the BARD1 gene in 109 of
BRCA1/2 -negative patients from families with the ag-
gregation of breast and/or ovarian cancer via utilizing
either denaturing high-performance liquid chromato-
graphy (DHPLC) or direct sequencing. Ten exonic and
seven intronic variants, including five novel alterations
were identified in this study. Three novel BARD1 mu-
tations [p.Gly439_Leu465del (c.1315-2A>G), p.Gln564X
(c.1690C > T), p.Arg659Arg (c.1977A > G)] can be consi-
dered as possibly deleterious. The p.Gly439_Leu465del
mutation is located in intron 4 within the consensus se-
quence of the splice acceptor site. The mutation causes

skipping of exon 5 and disruption of two ANK repeats
implicated in apoptosis and protein-protein association.
In silico prediction suggests that this variant may cause
an alteration of the BARD1 protein structure. Another
nonsense, protein truncating mutation, p.Gln564X,
which occurs in exon 8, leads to the loss of the BRCT do-
mains. Finally, p.Arg659Arg BARD1, a presumably silent
mutation located in exon 10 alters the exon splice en-
hancer motifs (ESE) and leads to exons 2-9 skipping
(p.Cys53_Trp635delinsfsX12) (Ratajska et al., 2012).

The study performed recently on a large group
(>800) of patients with breast and/or ovarian cancer
indicated that large deletions are not common in BARD1
and therefore may not contribute substantially to the
breast cancer risk (Klonowska et al., 2015). The study
also revealed that the p.Gln564X, p.Arg659Arg and
p.Arg658Cys mutations are recurrent in the Polish po-
pulation, what indicates their potential founder character
(Klonowska et al., 2015). The founder character of these
mutations is additionally supported by the fact that they
were independently detected in other studies conducted
in Polish population as well (Ratajska et al., 2012; Cybul-
ski et al., 2014; Ratajska et al., 2015). The functional and
in silico analyses suggested their possible deleterious
character (Ratajska et al., 2012; Klonowska et al., 2015;
Ratajska et al., 2015).

Recently, exome sequencing analyses focused on
panels of breast cancer predisposing genes have also led
to the identification of potentially deleterious BARD1
mutations. Additionally, the study showed that BARD1
is one of the most frequently mutated genes (after se-
veral moderate and highly penetrant genes, e.g. PALB2,
BRCA1 and BRCA2) in patients with breast and/or ova-
rian cancer (Walsh et al., 2011; Castera et al., 2014; Cy-
bulski et al., 2014; Pennington et al., 2014; Churpek
et al., 2015; Couch et al., 2015).

Conclusions

The genetic etiology of breast and/or ovarian cancer
cases aggregated in families is only partially known.
Apart from BRCA1/2 and several other genes of mode-
rate to high penetrance, a considerable fraction of breast
cancer predisposing factors (-50%) is still unknown. It
is presumed that DSB repair genes, encoding proteins
that are involved in the same molecular pathway as
BRCA1, may be candidate breast cancer susceptibility
genes.
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The findings that BARD1 is essential for BRCA1
tumor suppression functions and that it operates inde-
pendently in the regultion of apoptosis, suggest that the
BARD1 gene may serve as a plausible target for muta-
tions predisposing to breast and/or ovarian cancer. Al-
though a number of mutational studies have already
been conducted, a study on BARD1 mutations in pa-
tients with breast and/or ovarian cancer is still in its
infancy. Despite the fact that several potentially delete-
rious BARD1 mutations have been identified, further
studies should be carried out to evaluate their breast
and/or ovarian cancer predisposing effect and to identify
the unexplored mutations affecting the BARD1 gene.

It is noteworthy that none of the studies conducted
so far has provided a clear and statistically supported
proof for the role of BARD1 as a breast cancer suscepti-
bility gene. Therefore, large-scale association studies of
the selected BARD1 mutations would be highly desirable
to unequivocally confirm or reject the role that BARD1
plays in breast and/or ovarian cancer susceptibility. Im-
portantly, if breast cancer risk associated with BARD1
mutations turns out to be considerably high, the in-
clusion of testing of the BARD1 mutations into genetic
diagnostics of breast cancer and other genetically asso-
ciated cancers would be a far-reaching consequence.
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