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Abstract

The secondary structure prediction has been of special interest of computational scientists for almost a quarter
of a century. When the early methods suffered from lack of data, recent high-throughput sequencing techniques
extended the traditional RNA footprinting methods to provide the data for whole-transcriptome studies of RNA
secondary structures. Although the utility of such data has been well documented for secondary structure of large
RNAs, like rRNA or SRP RNA, our interest focuses on small RNAs, which are more challenging in employment
of high-throughput probing data. Here, we test the suitability of high-throughput DMS-probing data and positions
of known tRNA modifications as constraints for secondary structure predictions of Saccharomyces cerevisiae
tRNAs. Our results suggest that the employment of high-throughput DMS data only slightly increases the quality
of predictions. In contrast, the incorporation of known positions of modified bases as knowledge-based constraints
outperforms both, unconstrained and DMS-constrained predictions. This study provides an overview of the utility
of different sources of constraints for a small RNA folding.
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Introduction

The functions of some types of small RNA, such as
small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAs), or transfer RNAs (tRNAs), depend highly on
their structures. Also mRNAs, which were traditionally
considered as mere messengers of genetic information,
have been suggested to possess structures that affect
translational efficiency (Kertesz et al., 2010), transcript
stability (Goodarzi et al., 2014), or alternative splicing
(Barash et al., 2010). A classical method for studying the
RNA structure is footprinting. In this method, chemical
reagents or enzymes are used to modify or cleave bases
with specific structural features, the positions of which
can then be determined by denaturing gel electrophore-
sis. One of such examples is a chemical method em-
ploying dimethyl sulfate (DMS). DMS is a small com-
pound inducing methylation of N1 of adenosine and N3

of cytosine (Tijerina et al., 2007), which prevents the for-
mation of Watson-Crick pairs by modified bases. This
enables modification sites to be detected by reverse
transcription (RT), as modified sites cannot serve as
atemplate, resulting in premature reverse transcriptase
fall off. DMS modifies preferentially adenines and cyto-
sines that are single stranded, involved in a closing base
pair of the stem or in a base pair next to a GU pair (Ma-
thews et al., 2004). Besides base pairing, tertiary con-
tacts or protein-RNA interactions can also efficiently
protect nucleotides against DMS-induced methylation.
Such properties of DMS make it suitable for modeling of
the RNA secondary structure.

In recent years, it is possible to probe the RNA
structures in a high-throughput manner. The RNA foot-
printing has been combined with high-throughput se-
quencing enabling the whole-transcriptome RNA struc-
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ture studies. As an example, DMS-seq was used for high-
resolution transcriptome-wide probing of RNA structu-
res in vivo (Ding et al., 2014; Rouskin et al., 2014; Tal-
kish et al., 2014). Such high-throughput methods have
enabled large-scale and systematic discoveries of novel
structures and interactions. However, they produce dif-
ferent types of noise and bias, which should be carefully
handled during analysis. For example, a drawback of
DMS-seq is low resolution caused by selective methy-
lation of adenines and cytosines. Other limitations are
related to the employment of sequencing to interrogate
the RT stop sites. One of the steps of the computational
analysis is mapping of sequence reads to the reference
transcriptome. Usually, a minimum read length is requi-
red to provide mapping specificity, but this results in the
lack of a probing signal for the 3’ part of the RNA. For
large RNAs this is of minor importance, however, it rises
to a major limitation for an analysis of small RNAs.

A prominent example of small RNAs whose sequen-
ces typically allow extensive base pairing and non-cano-
nical interactions are tRNAs. The tRNA secondary struc-
ture is nearly universally arranged in a cloverleaf shape,
as first realized by Holley et al. (Holley et al., 1965). It is
composed of three hairpin stem-loops closed by another
stem, each extensively studied and characterized: the
acceptor stem (nucleotides 1-7 and 66-76), D stem loop
(nucleotides 10-25), the anticodon stem loop (ASL, nu-
cleotides 27-43), and T stem loop (nucleotides 49-65).
The L-shaped tertiary structure, determined for the first
time in 1974 (Kim, 1974; Robertus, 1974), is formed by
two coaxial stacks of helices in the secondary structure.
The acceptor stem and T stem coaxially stack and form
one of the arms, and the other arm is formed by coaxial
stacking of the D stem and an anticodon stem.

The tRNAs are heavily modified post-transcriptio-
nally during their maturation process. There are approxi-
mately 100 different chemical modifications described
that affect different positions on the tRNA (Machnicka,
2013). Modifications were found on 11.9% of the resi-
dues of the 561 sequenced tRNAs, with a median of
eight modifications per tRNA (Sprinzl, 2005). In the
yeast Saccharomyces cerevisiae, 16.4% of the residues
of the 34 unique sequenced cytoplasmic tRNA species
hold modifications, with a range 7-17 modifications per
tRNA. This would mean that more than 15% of the nu-
cleosides in yeast cytoplasmic tRNAs are not A, U, G, or
C. In general, hypomodified tRNAs are targeted for de-
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gradation, thus a primary role of tRNA modifications is
to prevent tRNAs from entering specific degradation
pathways (Phizicky, 2010). As the canonical tRNA func-
tion is related to protein biosynthesis, some of the func-
tions of tRNA modifications have been therefore linked
to the different steps of protein biosynthesis or transla-
tional fidelity. The anticodon loop is the domain that
directly interacts with mRNA and the ribosome. There-
fore, alteration to the tRNA structure at this location by
modification, changes directly the interaction between
tRNA and other partners of translation. This loop is
a prominent location for modifications, especially at posi-
tions of 34-37, where 34-36 are the positions of the anti-
codon nucleotides.

Modifications are also of key importance for the fol-
ding and stability of tRNAs (Motorin, 2010), and they
therefore act as modulators of tRNA structural flexibility.
Stabilizing the tRNA structure by nucleotide modifica-
tions is a common strategy for all kingdoms of life. For
instance, tRNAs of thermophilic organisms, which have
a higher content of G-C base pairs, undergo modifica-
tions at elevated temperatures to increase their stability
(Motorin, 2010). Modifications that may trigger or con-
tribute to tRNA dynamics are placed in the structural
core of the tRNA, where they are thought to stabilize
many tertiary interactions. Initiator tRNA (tRNA-iMet)
is the best example where a unique tertiary interaction
between D and T loops occurs only when 1-methyladeno-
sine (m1A) is present in position 58. The absence of the
m1A58 results in tRNA-iMet degradation due to weake-
ning of D/T loop interactions (Anderson, 1998; Kadaba,
2004).

Both, high-throughput DMS probing and known posi-
tions of RNA modifications provide a valuable source of
empirical information suitable for guiding the process of
RNA structure prediction. Thus, in this work we decided
to verify the suitability of high-throughput secondary
structure probing data for constraining the folding of
small RNAs, using Saccharomyces cerevisiae tRNAs as
a model and to compare it with other knowledge-based
constraints by the employment of the positions of known
tRNA modification sites.

Materials and methods

High-throughput in vivo DMS probing data of RNA
structures from Saccharomyces cerevisiae were derived
from Mod-Seq experiments (Talkish et al., 2014; SRA ac-
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Table 1. Modifications used in this study as constraints

MODOMICS | Short .
L Full name Function
abbreviation name
disrupts the Watson-Crick base pairing by introduction of
" mlA | 1-Methyladenosine a positive charge to the nucleoside, promotes the ionic inter-
actions with the negatively charged phosphates in the backbone
‘ m3C | 3-Methylcytidine changes the acceptor/donor pattern of the base
+ i6A Né6-isopentyladenosine confers the U-turn structure
6 t6A N6-threonylcarbamoyladenosine |increases the recognition of cognate codons
D D Dihydrouridine changes the sugar pucker, destabilizes the helix
I I Inosine regulates rare codon usage
K mlG | 1-Methylguanosine prevents +1 frameshifting
R m2,2G | N2,N2-dimethylguanosine eliminates the ab;hty of jthe N2 function to donate in hydrogen
bonds and alters its pairing
Y yW Wybutosine prevents -1 frameshifting

cession number: SRP029192). In the first step of reads
processing, 5’ and 3’ adapter sequences were removed
using cutadapt (Martin, 2011). Reads with 5’ adapter
were discarded from further analysis, as in the original
protocol (Talkish et al., 2014). After quality filtering
conducted with fastx-toolkit, reads were mapped to the
positive strand of tRNA sequences using Bowtie v1.0
(Langmead et al., 2009), allowing multiple mappings
within best strata and maximum 1 mismatch in the seed.
Reactivity profiles were calculated and normalized as
described in Talkish et al. (2014). Secondary structures
of tRNAs were predicted using RNAstructure v.5.7 with
default values for slope and intercept parameters (Reu-
ter and Mathews, 2010) with soft constrains, hard con-
strains, or without constrains. Normalized reactivity pro-
files were used as soft constrains. Modifications which
destabilize base-stacking interactions or involve Watson-
Crick edge were used as hard constrains (Table 1). Posi-
tions of modifications in yeast tRNA sequences were
obtained from MODOMICS database (Machnicka et al.,
2013). The analysis was limited to 26 tRNAs annotated
in MODOMICS database which also revealed significant
coverage with DMS probing data (Table 2).

Results

Prediction of tRNA secondary structure

The tRNA is one of the few fundamental RNA mole-
cules which reveal evolutionary conservation among all
living organisms. Despite their small size and well deter-

mined structure, for most of tRNA sequences it is not
possible to predict their biologically relevant secondary
structure merely using their sequence. In our work, first
we compared the ability of Saccharomyces cerevisiae
tRNA sequences to accommodate the model tRNA struc-
ture as a minimum free energy (MFE) structure using
RNAstructure software (Reuter and Mathews, 2010).
For every predicted tRNA structure, we measured the
quality of the prediction by comparison with the establi-
shed model structure and a calculation of the positive
predictive value (PPV), which describes the ratio of base
pairs observed in the model, recovered by prediction.
We were able to observe only a few tRNAs, the secondary
structure of which was perfectly predicted by the RNA-
structure software (tRNA-Glu(TCT), tRNA-Met(CAT), and
tRNA-Tyr(GTA)), and a few which contained no base pairs
consistent with the model structure (tRNA-Arg(ICG),
tRNA-Ser(CGA), and tRNA-Ser(TGA)) (Fig. 1). Most of
the tRNA sequences have been predicted to adapt the
conformations within the whole spectrum of similarity to
established models.

DMS probing data have variable effect
on tRNA structure prediction

We used the publicly available DMS probing data
from the Mod-Seq experiment (Talkish et al. 2014). We
performed the computational analysis of the short reads
according to the original protocol. Next, we used the
calculated reactivity as soft constraints for structure
prediction with the RNAstructure software (Reuter and
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Fig. 1. Comparison of tRNA secondary structure prediction efficiency. Secondary structures of yeast tRNAs were predicted

using raw tRNA sequence (red) and with incorporation of DMS-seq-derived (green) or known nucleotide modification (blue)

constraints. The distance of the predicted structures to the established model was measured by the positive predictive value

(PPV). A) The accuracy of prediction of individual tRNAs. B) The distribution of the PPV values for three approaches used in

this study. Center lines show the medians, box limits show 25" and 75" percentiles, whiskers extend 1.5 times the interquartile

range from the 25" and 75" percentiles, outliers are represented by dots. The highest agreement with model structures
is observed for prediction with known modification sites as constraints

Mathews 2010). Owing to the limitations of sequencing-
based DMS probing experiment (low resolution due to
selective modification of A and C, lack of signal for 3’
part of the molecule), we have obtained a relatively low
number of significant signals, ranging from 0 for tRNA-
Asn(GTT), tRNA-Ile(TAT), and tRNA-Ser(IGA) up to 9
for tRNA-Glu(TTC) (Table 2). Nevertheless, for seven
tRNAs it was enough to boost the effectiveness of struc-
ture prediction, which resulted in gaining structures more
similar to the established model, with a higher PPV value
comparing to the unconstrained folding (Figs. 1 and 2).
The highest gain was observed for tRNAs which had
a poor and moderate performance without constraints.
In six cases, the introduction of DMS probing data
resulted in predictions which were of lower quality than
the unconstrained folding. The prediction made for the
remaining 13 tRNAs remained unaffected by the em-
ployment of DMS data.

Incorporation of known tRNA modification sites
Iimproves tRNA structure prediction

To compare the suitability of high-throughput DMS
probing data for the structure prediction of small RNAs
with other methods, we considered the tRNA modifica-
tion sites deposited in MODOMICS database (Mach-
nicka et al. 2013). From among the total number of 330
known modified positions in yeast tRNAs, we selected
149 sites corresponding to the modifications which af-

fect the Watson-Crick edge of nucleosides or destabilize
the RNA helices by loss of stacking interactions (Table 1).
We used those as hard constraints for RNAstructure
software by forbidding modified nucleotides to form any
base pair. The accordance of predicted structures with
established models was in most cases much higher than
when unconstrained folding was performed (Fig. 1 and
Fig. 2, Table 2). Only one tRNA (tRNA-Leu(CAA)),
which was poorly predicted with RNAstructure software
without any constraints, did not reveal any improvement
when modifications were considered. Structures of other
eight tRNAs unaffected by incorporation of modification-
based constraints had already been well predicted with-
out constraints (PPV > 0.75). Importantly, none of modi-
fication-constrained predictions was of lower agreement
with the established models than the unconstrained
ones, as it was observed for DMS-derived constraints.

Discussion

The chemical probing of the RNA structure using
DMS is a well-established method for investigation of
RNA secondary structure (Brunel et al., 2000). It has
been successfully applied to hundreds of RNAs, resulting
in an estimation of high-quality reference structures.
Recent developments of high-throughput transcriptome-
wide DMS probing techniques allowed for simultaneous
investigation of thousands of transcripts in a single ex-
periment, both in vitro and in vivo (Ding et al., 2014;
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Table 2. Statistics of the signals used for constraining tRNA folding

jon Nomberotiow Mol it Mot onerste
ase modifications as constraints DMS probing signals probing short reads

tRNA-Ala(AGC) 10 6 2 1519.816
tRNA-Arg(ICG) 13 7 1 1355.908
tRNA-Arg(TCT) 12 6 4 6606.227
tRNA-Asn(GTT) 13 8 0 1519.494
tRNA-Asp(GTC) 8 3 8 5719.973
tRNA-Cys(GCA) 11 5 1 182.2933
tRNA-GIu(TTC) 7 1 9 8713.16
tRNA-Gly(GCC) 10 3 3 814.5753
tRNA-His(GTG) 11 4 4 2223.961
tRNA-Ile(AAT) 13 9 7 2024.234
tRNA-Ile(TAT) 15 6 0 153.8158
tRNA-Leu(CAA) 13 4 3 5044.565
tRNA-Leu(TAA) 15 6 1 3375.195
tRNA-Lys(CTT) 12 6 5 12764.22
tRNA-Met(CAT) 13 5 6 9400.25
tRNA-Phe(GAA) 14 5 2 1881.342
tRNA-Pro(TGG) 13 5 2 1782.627
tRNA-Ser(CGA) 13 6 1 1619.012
tRNA-Ser(GCT) 12 6 2 925.8118
tRNA-Ser(IGA) 14 6 0 1666.2

tRNA-Ser(TGA) 14 6 1 9535.706
tRNA-Thr(AGT) 14 9 2 563.5526
tRNA-Trp(CCA) 17 5 3 1223.853
tRNA-Tyr(GTA) 16 9 1 1163.128
tRNA-Val(AAC) 14 7 6 2233.156
tRNA-Val(TAC) 13 6 1 414.8701

Rouskin et al., 2014; Talkish et al., 2014). However,
those technologies possess many limitations. One of
them is limited suitability for interrogation of secondary
structures of small RNAs. In our analysis the DMS-de-
rived constraints for secondary structure prediction per-
formed worse than the rather rough constraints based
on known tRNA modification sites. One of the possible
explanations is the low number of DMS modification
signals obtained in our analysis (Table 2). In most cases
it was significantly lower than the number of known
modification sites. Therefore, alower effect on the struc-
ture prediction. The major reasons for this is the limita-

tion of the protocols for high-throughput sequence pro-
bing and requirements for specificity during the short
read mapping.

On the other hand, our study has revealed the utility
of knowledge-based constraints for the RNA structure
modeling. We employed known tRNA base modifications,
which resulted in a superior quality of secondary struc-
ture predictions. This, however, was not surprising, con-
sidering the high evolutionary conservation of tRNA
modification positions and their primary role in the pro-
per tRNA folding 7n vivo and functioning. Based on the
presented results, one could speculate about the suita-
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Fig. 2. Examples of tRNA secondary structure models and predictions. The established models of secondary structures of four

tRNAs: A) tRNA-Ala(AGC); B) tRNA-Arg(ICG); C) tRNA-Leu(CAA); and D) tRNA-Phe(GAA), has been overlaid with DMS-seq

probing results (green) and modification sites (red) used for constraining the structure prediction. The secondary structures

predicted for each tRNA using raw sequence (1), DMS reactivity data (2), or known modification sites (3) has been shown right

to each model structure. Anticodon triplet has been highlighted in gray boxes. The low number of significant DMS reactive sites
and differential ability of individual approaches to predict the model structure can be observed

bility of other sources of information for constraining
RNA secondary structure prediction, such as, for ins-
tance, the presence of protein binding motifs or sequen-
ces characteristic for known tertiary structural motifs.
Our study has shown that employment of such indirect
information could be essential for proper RNA structure
prediction.
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