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Abstract

The prediction of subcellular locations of proteins can provide useful hints for revealing their functions as well
as for understanding the mechanisms of some diseases and, finally, for developing novel drugs. As the number
of newly discovered proteins has been growing exponentially, laboratory-based experiments to determine the
location of an uncharacterized protein in a living cell have become both expensive and time-consuming. Con-
sequently, to tackle these challenges, computational methods are being developed as an alternative to help bio-
logists in selecting target proteins and designing related experiments. However, the success of protein subcellular
localization prediction is still a complicated and challenging problem, particularly when query proteins may have
multi-label characteristics, i.e. their simultaneous existence in more than one subcellular location, or if they move
between two or more different subcellular locations as well. At this point, to get rid of this problem, several types
of subcellular localization prediction methods with different levels of accuracy have been proposed. The support
vector machine (SVM) has been employed to provide potential solutions for problems connected with the pre-
diction of protein subcellular localization. However, the practicability of SVM is affected by difficulties in selecting
its appropriate kernel as well as in selecting the parameters of that selected kernel. The literature survey has
shown that most researchers apply the radial basis function (RBF) kernel to build a SVM based subcellular locali-
zation prediction system. Surprisingly, there are still many other kernel functions which have not yet been applied
in the prediction of protein subcellular localization. However, the nature of this classification problem requires
the application of different kernels for SVM to ensure an optimal result. From this viewpoint, this paper presents
the work to apply different kernels for SVM in protein subcellular localization prediction to find out which kernel
is the best for SVM. We have evaluated our system on a combined dataset containing 5447 single-localized pro-
teins (originally published as part of the Höglund dataset) and 3056 multi-localized proteins (originally published
as part of the DBMLoc set). This dataset was used by Briesemeister et al. in their extensive comparison of multi-
localization prediction system. The experimental results indicate that the system based on SVM with the Laplace
kernel, termed LKLoc, not only achieves a higher accuracy than the system using other kernels but also shows
significantly better results than those obtained from other top systems (MDLoc, BNCs, YLoc+). The source code
of this prediction system is available upon request.

Key words: support vector machine, kernel, kernel selection, protein subcellular localization prediction, multi-
label classification

Introduction

A biological cell is made up of many different com-
partments or organelles. These compartments are closed
to one another and also have different functions. The
proteins in the cell are responsible for most of the func-
tions required for a cell’s survival. A typical cell contains
approximately one billion protein molecules that reside
in many different compartments or organelles, usually

termed “subcellular locations” (Chou and Shen, 2007a).
Proteins can perform their appropriate functions when
they are located in the right subcellular locations. Know-
ledge of the subcellular localization of proteins is impor-
tant, because it (a) provides useful insights into their
functions, (b) indicates how and in which kind of cellular
environments they interact with one another and with
other molecules, (c) helps in understanding the intricate
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pathways that regulate biological processes at the cellu-
lar level and (d) helps in identifying and prioritizing drug
targets during the process of drug development (Chou
and Shen, 2010; Wang et al., 2011).

Although various experimental approaches have
been developed for determining protein subcellular loca-
tions, most of those approaches are unfortunately costly
and also time-consuming (Du and Xu, 2013). However,
the number of newly discovered proteins has been grow-
ing exponentially, which in turn makes the subcellular
localization prediction by purely laboratory tests pro-
hibitively expensive (Wan et al., 2012). In this context,
computational methods have been developed to help bio-
logists in the selection of target proteins and in the de-
sign of related experiments. Moreover, computational
methods are fast and can potentially predict locations for
proteins whose actual locations have not yet been ex-
perimentally determined. Various methods for predict-
ing subcellular localization of protein sequences have
been extensively studied in the last decades, and re-
searchers have developed increasingly numbers of new
models to acquire better prediction performance (Yang
et al., 2006).

Conventional methods for subcellular localization
prediction can be roughly divided into sequence-based
methods and annotation-based methods (Yang et al.,
2006; Wan et al., 2012; Simha et al., 2014). Sequence-
based predictors employ: 1) sequence-coded sorting sig-
nals (Bannai  et al., 2002; Petsalaki et al., 2006), such as
PSORT (Nakai and Kanehisa, 1991), WoLF PSORT (Hor-
ton et al., 2007), TargetP (Emanuelsson et al., 2000) and
SignalP (Nielsen et al., 1997); 2) amino acid composition
information (King and Guda, 2007), such as amino-acid
compositions (AAC) (Nakashima and Nishikawa, 1994),
amino-acid pair compositions (PairAA) (Nakashima and
Nishikawa, 1994), gapped amino-acid pair compositions
(GapAA) (Park and Kanehisa, 2003), and pseudo amino-
acid composition (PseAA) (Chou and Cai, 2003); and 3)
both information sources (Höglund et al., 2006; Horton 
et al., 2007). It should be noted that sequence-based me-
thods are general in that they can be applied to any
newly discovered proteins (Wan et al., 2013). However,
their performance is usually poor, especially for datasets
containing sequences with low-similarity.

Annotation-based predictors use information about
functional domains and motifs (Chou and Cai, 2002; Scott
et al., 2004), protein–protein interaction (Lee et al., 2008;

Shin et al., 2009), homologous proteins (Mak et al., 2008;
Lin et al., 2009), annotated Gene Ontology (GO) terms
(Huang et al. 2008) such as Euk-OET-PLoc (Chou and
Shen, 2006), Euk-mPLoc (Chou and Shen, 2007b), iLoc-
Gneg (Xiao et al., 2011a), CELLO2GO (Yu et al., 2014)
and Cell-PLoc 2.0 (Chou and Shen, 2010) and textual in-
formation from Swiss-Prot keywords (Nair and Rost, 2002;
Lu et al., 2004) or PubMed abstracts (Brady and Shatkay,
2008; Fyshe et al., 2008). The annotation-based predic-
tors often show higher accuracies than pure sequence-
based predictors, although they are less robust when the
protein is a newly discovered one and even if its close
homologues are unknown (Briesemeister et al., 2010a).
In fact, when the protein to be predicted is a newly dis-
covered one, there is no existing annotation in the data-
base. As a result, the prediction performance of anno-
tation-based methods will be degraded. However, since
the coverage of public annotation databases is increasing
rapidly (Yang et al., 2006), so at least some annotation
of the close homologs of a novel protein is expected to
be available. This will reduce the above limitation of
annotation-based methods.

In addition to the above approaches, some resear-
chers have developed hybrid prediction approaches (Chou
and Shen, 2007b; Blum et al., 2009; Briesemeister et al.,
2010a; Simha et al., 2014; Simha et al., 2015) which in-
clude both the sequence-based methods and the annota-
tion-based methods.

Not only protein sequence information but also pre-
diction algorithms could affect the accuracy of subcellu-
lar localization prediction (Li et al., 2012). To date, many
computational techniques, such as the neural network
(Zou et al., 2007), K-nearest neighbor (KNN) (Chou
et al., 2006; Xiao et al., 2011b; He et al., 2012), fuzzy
KNN (Gu et al., 2010), and Bayesian (Briesemeister
et al., 2010a; Simha et al., 2014; Simha et al., 2015),
have been introduced for the prediction of protein sub-
cellular localization. 

In recent times, a support vector machine (SVM)
(Höglund et al., 2006; Li et al., 2012; Wan et al., 2012;
Wan et al., 2014; Hasan et al., 2015,) has been extensi-
vely applied to provide potential solutions for the pre-
diction of protein subcellular localization. However, the
selection of an appropriate kernel and its parameters for
a given classification problem influences the perfor-
mance of the SVM. The reason for this is that different
kernel functions construct different SVMs and affect the
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generalization ability and learning ability of the SVM.
However, there is no theoretical method for selecting
the kernel function and its parameters. The literature
survey has shown that most of the researchers have
applied the radial basis function (RBF) kernel to build
SVM based subcellular localization prediction system
(Chou and Cai, 2002; Park and Kanehisa, 2003; Li et al.,
2011; Wan et al., 2012; Wan et al., 2013) and have found
the value of its parameter by using different techniques,
such as trial and error, heuristics or grid search proce-
dure (Wan et al., 2015). Surprisingly, still there are
many other kernel functions which have not yet been
applied in the protein subcellular localization prediction.
However, the nature of this classification problem re-
quires the application of different kernels for SVM to
ensure an optimal result. This requirement motivated us
to apply different kernel functions for SVM rather than
simply using RBF in protein subcellular localization pre-
diction, which, in turn, may provide better accuracy of
the prediction system. At the same time, we tried to find
out the parameter value to the corresponding kernel.   

Moreover, as there exist multi-location proteins that
can simultaneously reside at, or move between, two or
more subcellular locations, recent studies have focused
on predicting both single label and multi-label proteins
(Wan et al., 2015). However, the consideration of the
multi-label protein has been excluded in some studies
(Shen et al., 2007). Identification of the multiple loca-
tions of a protein is important, because the translocation
of proteins can serve some unique functions (Wan et al.,
2015). Therefore, this article has also considered
a multi-label prediction for predicting the subcellular
localization of both single label and multi-label proteins. 

The proposed system has been trained and tested on
a dataset containing both single- and multi-localized pro-
teins which has been used in the development and test-
ing of the YLoc+ system (Briesemeister et al., 2010a) as
well as MDLoc and BNCs systems (Simha et al., 2014;
Simha et al., 2015) and derived from the Höglund data-
set (Höglund et al., 2006) and the DBMLoc dataset
(Zhang et al., 2008). As like other studies (Höglund
et al., 2006; Shatkay et al., 2007; Blum et al., 2009;
Briesemeister et al., 2010a;  Simha et al., 2014; Simha
et al., 2015), multiple runs of the 5-fold cross-validation
have been performed in our work. The results clearly
demonstrate the advantage of using Laplace kernel with
SVM in protein subcellular localization prediction. The

F1-label score of 74% and overall accuracy of 70% ob-
tained by LKLoc (SVM with Laplace kernel based sys-
tem) are significantly better than the corresponding
results obtained by the system using other kernels as
well as other top existing classifiers (MDLoc, BNCs,
YLoc+) when only multi-localized proteins were consi-
dered. In addition, in the case of both single and multi-
localized proteins, LKLoc retained a higher overall accu-
racy than the system using other kernels, or the BNCs.

Materials and methods

Datasets 

In our experiments, we used a combined dataset con-
taining 5447 single-localized proteins, originally publi-
shed as part of the Höglund dataset (Höglund et al.,
2006) and 3056 multi-localized proteins, originally publi-
shed as part of the DBMLoc set (Zhang et al., 2008).
This combined dataset was initially constructed for an
extensive comparison of multi-localization prediction sy-
stems by Briesemeister et al. (Briesemeister et al.,
2010a). This dataset is already homology-reduced, i.e.
the protein sequences from the Höglund dataset share
no more than 30% sequence identity with each other;
and at the same time, sequences from the DBMLoc
dataset share less than 80% sequence similarity with one
another. As it cannot be known a priori whether a pro-
tein may localize to a single or to multiple locations, we
trained our system on the combined set of proteins, thus
enabling it to handle the actual prediction task. We re-
ported results using different evaluation metrics that
obtained over the dataset containing both single- and
multi-localized proteins for comparing our system to
other published systems. As most of the results for
other systems are only available for the set of multi-
localized proteins only (Simha et al., 2015), we mea-
sured two sets of results from our trained system: one
set was for the combined set of single and multi-localized
proteins; and the other was for multi-localized proteins
only. In cases where reports obtained on the combined
set of single- and multi-localized proteins from other
systems were available, we also made comparisons with
our system. The 5447 single-localized proteins covered
the following 9 locations (abbreviations and number of
proteins per location are given in parentheses): cyto-
plasm (cyt, 1411 proteins), endoplasmic reticulum (ER,
198), extra cellular space (ex, 843), golgi apparatus (gol,
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150), lysosome (lys, 103), mitochondrion (mi, 510), nu-
cleus (nuc, 837), membrane (mem, 1238), and peroxi-
some (per, 157). The multi-localized proteins come from
the following pairs of locations: cyt and nuc (cyt_nuc,
1882 proteins), ex and mem (ex_mem, 334), cyt and
mem (cyt_mem, 252), cyt and mi (cyt_mi, 240), nuc and
mi (nuc_mi, 120), ER and ex (ER_ex, 115), and ex and
nuc (ex_nuc, 113).  It should be noted that all the multi-
location subsets used had over 100 representative pro-
teins and this is currently the largest data set of proteins
from multiple locations (Briesemeister et al., 2010b).

Biological input features of protein 

In this study, we used a 30-dimensional feature vec-
tor of protein, similar to that used by Briesemeister
et al. for YLoc+ and R. Ramanuja Simha for MDLoc and
BNCs (Briesemeister et al., 2010a, 2010b; Simha et al.,
2014; Simha et al., 2015). However, thirteen of these
features were derived directly from the protein sequen-
ce, such as the length of the amino acid chain, the length
of the longest very hydrophobic region, and the respec-
tive numbers of methionine, asparagine, and tryptophan,
occurring in the N-terminus, etc. (Simha et al., 2014).
Again, nine of these features were extracted from the
pseudo-amino acid composition (Chou and Cai, 2003),
which was based on certain physical and chemical pro-
perties of amino acid subsequences. The remaining 8
features came from two types of annotation based fea-
tures. Here, one type of annotation-based features con-
tained two features constructed using two distinct
groups of PROSITE patterns, and the other type of anno-
tation-based features contained six features extracted
based on GO-annotations (Simha et al., 2014; Simha
et al., 2015). 

SVM classification

Consider the problem of separating a set of training
vectors belonging to two separate classes, (x 1, y 1), (x 2,
y 2), ..., (xn, yn ), where xi 0 R p

 and yi 0 {!1, +1} is the
corresponding class label, 1 # i # n. The main task of
this problem is to find a classifier with a decision func-
tion f (x, θ) such that y = f (x, θ), where y is the class
label for x and θ is a vector of unknown parameters of
the decision function. The support vector machine is
a well-known classifier and it has been applied broadly in
many classification problems. The SVM modeling algo-
rithm finds an optimal hyperplane with the maximal mar-

gin to separate two classes, which requires the solving of
the following constraint problem (Vladimir, 1995):
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Using the method of Lagrange multipliers, we can
obtain the dual formulation which is expressed in terms
of variables αi (Scott et al. 2004; Yang et al. 2006; Wan
et al. 2012):
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Finally, the linear classifier based on a linear discrimi-
nant function takes the following form:

(4)f x y x x bi i i
T

i
n( ) = + α

In many applications, a non-linear classifier provides
better accuracy.  The naive way of making a non-linear
classifier out of a linear classifier is to map our data from
the input space X to a feature space F  using a non-linear
function i: X 6 F. In space F , the optimization takes the
following form using kernel function (Schölkopf and
Smola 2002):
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Finally, in terms of the kernel function the discriminant
function takes the following form:

(6)( )f x y k x x bii
n

i i( ) ,= + α

Kernel and its parameters selection

A kernel function and its parameter have to be
chosen to build a SVM classifier (Schölkopf and Smola
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2002; Hasan et al. 2014). In this study, four main ker-
nels have been used to build SVM classifier. These are:

1) Linear kernel: ,K x x x xi j i j( , ) ,=

2) Polynomial kernel: ,( )K x x x xi j i j
d

( , ) ,= +1

    d is the degree of the polynomial.

3) Gaussian kernel: ,K x x
x x

i j
i j

( , ) exp= −
−
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22σ
    σ is the width of the function.

4) Laplace kernel: ,K x x
x x

i j
i j
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    σ is the width of the function.

Training an SVM finds the large margin hyperplane,
i.e. sets the parameters αi. The SVM has another set of
parameters called hyperparameters: the soft margin
constant, C, and any parameters the kernel function may
depend on (width of a Gaussian kernel or degree of
a polynomial kernel) (Ben-Hur and Weston  2010). The
soft margin constant C adds a penalty term to the opti-
mization problem. For a large value of C, a large penalty
is assigned to errors/margin errors and creates force to
consider points close to the boundary and decreases the
margin. A smaller value of C allows to ignore points
close to the boundary, and increases the margin.

Kernel parameters also have a significant effect on
the decision boundary (Ben-Hur and Weston, 2010). The
degree of the polynomial kernel and the width parameter
σ of the Gaussian kernel or Laplace kernel control the
flexibility of the resulting classifier. The lowest degree
polynomial is the linear kernel, which is not sufficient
when a non-linear relationship between features exists.
Higher degree polynomial kernels are flexible to discri-
minate between the two classes with a sizable margin
and greater curvature for a fixed value of the soft-margin
constant. On the other hand in the Gaussian kernel or
Laplace Kernel, for a fixed value of the soft-margin con-
stant, for large values of σ the decision boundary is
nearly linear. As σ decreases, the flexibility of the deci-
sion boundary increases and small values of σ lead to
overfitting (Ben-Hur and Weston, 2010).

A question frequently posed by practitioners is
“which kernel should I use for my data?”. There are se-
veral answers to this question. The first is that it is, like
most practical questions in machine learning, data-de-
pendent, so several kernels should be tried. We typically
follow the following procedure: we try a linear kernel

first, and then see if we can improve on its performance
using a non-linear kernel (Ben-Hur and Weston, 2010;
Hasan et al., 2014).

Multiclass multi-label classification using SVM

Support vector machines are formulated for two
class single label problems. An extension to multiclass
multi-label problems for SVM is not straightforward
(Hasan et al., 2013; Hasan et al., 2014). We followed the
Binary relevance method (BR) (Tsoumakas et al., 2009)
to solve the multiclass multi-label problem. The binary
relevance method (BR) (Tsoumakas et al., 2009) uses
the one-against-rest strategy to convert a multi-label pro-
blem into several binary classification problems. Given
a multi-label dataset with N class labels, the BR method
trains one classifier for each class label. When training
one classifier for each class label, the (BR) method anno-
tates all of the training examples associated with that
label as positive examples, while all remaining examples
are regarded as negative examples (Wang et al., 2015).
Given a test example, each classifier in BR will output
a prediction score and BR will combine these scores into
an N -dimensional score vector, where each score cor-
responds to a specific class label. The value of the score
has two conditions, positive and negative: positive means
the binary classifier predicts the test example belonging
to the corresponding class label; and negative means it
does not belong to the class label. Note that if all N
scores are negative, the class label with the maximum
score is assigned to the test example.

In accordance with the method discussed above, in
order to predict the subcellular locations of datasets
containing both single-label and multi-label proteins, N
independent binary SVMs are trained, one for each lo-
cation. Then, the subcellular location(s) of the i -th query
protein will be predicted as:

(7){ }M x j f xi j
N

j i*( ) : ( )= >= 1 0

Here, M *(xi ) is a predicted set that may have one or
more elements, even it can be empty too, which enables
us to make multi-label predictions. However, if Eq. 7
provides an empty class label, i.e. M *(xi ) = i, in that
case there will only be a single subcellular location of the
query protein and that location will be given by

(8)M x f xi
j

j i*( ) ( )argmax=
=1
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Experimental setting 

In a statistical prediction, there are three commonly
used methods to derive the metric values for a predictor;
these are the independent dataset test, a subsampling
(e.g., K -fold cross validation) test, and a jackknife test
(Chou and Shen, 2007a). These methods are often used
for testing the accuracy of a statistical prediction algo-
rithm. However, of these three methods, the jackknife
test is deemed the most objective, because it can always
yield a unique result for a given benchmark data set, as
reported in a comprehensive review (Chou and Shen,
2007a). Although the jackknife test has been increa-
singly and widely adopted by investigators to examine
the power of various prediction methods, it requires
significant computational time for a larger dataset.  

In this study, to save computational time, we used
K -fold cross validation (subsampling) methods and com-
pared the performance of LKLoc (SVM with Laplace ker-
nel based system) with that of other systems (YLoc+
(Briesemeister et al., 2010a), Euk-mPLoc (Chou and
Shen, 2007b), WoLF PSORT (Horton et al., 2007), and
KnowPredsite (Lin et al., 2009)) and the systems based on
other kernels. The performance of YLoc+, Euk-mPLoc,
WoLF PSORT, and KnowPredsite on a large set of multi-
localized proteins was studied comprehensively in (Simha
et al., 2015). As the information about the exact 5-way
splits of dataset used in previous studies has not been
published, in order to validate the stability and the
statistical significance of our results, we repeated the
5-fold cross-validation for 5 times. In each 5-fold cross-
validation the given training samples are randomly parti-
tioned into 5 mutually exclusive sets of approximately
equal size and approximately equal class distribution.
Finally, we reported the average results in this study. 

All programs were run on a standard DELL Optiplex
390 machine with 8 GB RAM and a Core-i3 processor
running at 3.30 GHz.

Evaluation metrics

The measurement of performance in a multi-label
classification is more complicated than in the traditional
single-label classification, as each example could be asso-
ciated with multiple labels simultaneously. In this study,
we used various types of adapted measures, such as
multi-label accuracy and F 1 score proposed by Tsou-
makas et al. (Tsoumakas et al., 2009), for our evaluation
of the multi-label classification.

To formally define these evaluation measures, let D
be a dataset containing m proteins and S = {s 1, s 2, ...,
sq} be the set of q possible subcellular components in
the cell. For a given protein P, let M P

 = {si|li
P
 = 1,

where 1# i # q} be the set of locations to which protein
P localizes according to the dataset, and let M̂ P

 = {si|liˆ 
P

= 1, where 1# i # q} be the set of locations that
a classifier predicts for protein P, where liˆ

P
, li

P
 0 {1, 0}.

li
P
 or liˆ

P
 takes the value 1 if P actually localizes si or is

predicted to si, respectively. The multi-label accuracy
and the multi-label F 1 score are computed as follows
(Simha et al., 2014):
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In our evaluation, we also used adapted measures of
multi-label precision and recall denoted Presi and Recsi to
evaluate how well the classifier will classify proteins as
localized or not localized to each individual location si,
and these are defined as follows (Li et al., 2011):
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We used the terms Multilabel-Precision and Multi-
label-Recall to refer to Presi and Recsi, respectively.
Here, Presi represents the ratio of the number of cor-
rectly predicted multiple locations to the total number of
multiple locations predicted, and Recsi represents the
ratio of the number of correctly predicted multiple loca-
tions to the number of original multiple locations, for all
the proteins that co-localize to location si (Simha et al.,
2014). Therefore, high values of these measures for
proteins that co-localize to the location si can be used to
indicate that the sets of predicted locations that include
location si are predicted correctly (Simha et al., 2014).

Standard precision and recall measures, denoted by
Pre–Stdsi and Rec–Stdsi, are used in this paper to evalu-
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ate the correctness of predictions made for each location
si and are computed as:

Pre Std
TP

TP FP

Rec Std
TP

TP FN

s

s

i

i

− =
+

− =
+

where TP (true positives) denotes the number of pro-
teins that localize to si and are predicted to localize to si,
FP (false positives) denotes the number of proteins that
do not localize to si but are predicted to localize to si,
and FN (false negatives) denotes the number of proteins
that localize to si but are not predicted to localize to si.

Additionally, the adapted measure of the F 1-label
score used by Briesemeister et al. (Briesemeister et al.,
2010a) for evaluating the performance of multi-location
predictors was used in our evaluation and it is defined as:

F
S s Si

1
1 2

− =
× ×

+∈
label

Pre Rec

Pre Rec

s s

s s

i i

i i

where S is the set of all locations.

Results and discussion 

SVM model selection

In order to generate high performance SVM classi-
fiers capable of dealing with real data, an efficient model
selection is required. A grid-search technique was used
to find the best model for SVM with different kernels in
this work. Herein, this method selects the values of para-
meters considering the highest multi-label accuracy and
then time, if more than one position in the search space
has the same multi-label accuracy. Sequential minimiza-
tion optimization with the following options in Matlab
2014b, shown in Table 1, was used to develop our sys-
tem. According to the experimental setting, we perfor-
med 5 complete runs of the 5-fold cross-validation and
each time we selected the best parameter of the classi-
fier on the basis of the multi-label accuracy. 

Table 1. Sequential Minimization Optimization Options

Option Value

MaxIter 5 000 000

KernelCacheLimit 30 000

For the linear kernel based SVM, in order to find the
parameter value C (penalty term for soft margin), we

considered the values from 2!4 to 24 as our search space.
The selected C of 5 complete runs of the 5-fold cross-
validation on the combined set of single- and multi-locali-
zed proteins is shown in Table 2. Table 2 shows that on
most occasions the best model is found for the values of
C = 2!4 or C = 2!1. Finally, we used C = 2!4 (using ran-
dom selection between these two values) in all 5 com-
plete runs of the 5-fold cross-validation and averaged our
results in order to ensure unbiased model selection.

For a polynomial kernel based SVM, to find the
parameter value C (penalty term for soft margin) and d,
we considered the values from 2!4 to 24 for C and from
1 to 3 for d as our search space. The selected C and d of
5 complete runs of the 5-fold cross-validation on the com-
bined set of single- and multi-localized proteins is shown
in Table 2. Table 2 shows that on most occasions the
best model was found for the values of C = 21 and d = 3.
Finally, we used C = 21 and d = 3 in all 5 complete runs
of the 5-fold cross-validation and averaged our results in
order to ensure unbiased model selection.

For the radial basis function (RBF) kernel based
SVM, to find the parameter value C (penalty term for
soft margin) and σ (sigma), we considered the values
from 2!8 to 28 for C and from 2!8 to 28 for sigma as our
search space. The selected C and sigma of 5 complete
runs of the 5-fold cross-validation on the combined set of
single- and multi-localized proteins are shown in Table 2.
Table 2 shows that on most occasions the best model is
found for the value of C = 21 and σ = 21. Finally, we used
C = 21 and σ = 21 in all complete runs of the 5-fold cross-
validation and averaged our results in order to ensure
unbiased model selection.

Again, for the Laplace kernel based SVM, to find the
parameter value C (penalty term for soft margin) and σ
(sigma), we considered the values from 2!8 to 28 for C
and from 2!8 to 28 for sigma as our search space. The
selected C and sigma of 5 complete runs of the 5-fold
cross-validation on the combined set of single- and multi-
localized proteins are shown in Table 2. Table 2 shows
that on most occasions the best model is found for the
value of C = 28 and σ = 23. Finally, we used C = 28 and
σ = 23 in all 5 complete runs of the 5-fold cross-validation
and averaged our results in order to ensure unbiased
model selection.

Performance measure evaluations

In this section, we compare the performance of each
kernel for SVM and also compare the performance of the 



M.A.M. Hasan, S. Ahmad,  M.K.I. Molla92

Table 2. Selected parameters of 5 complete runs of the 5-fold cross-validation on the combined set 
of single- and multi-localized proteins for each kernel based SVM (Linear, Polynomial, RBF, Laplace)

Number
of complete runs

Linear kernel Polynomial kernel RBF kernel Laplace kernel

C C d C σ C σ

1
st

2!1 2!2 3 21 21 28 23

2
nd

2!1 21 3 22 21 25 22

3
rd

2!4 2!4 3 21 21 28 23

4
th

2!4 21 3 21 21 28 23

5
th

2!2 21 3 27 21 28 23

Table 3A. Comparison of the results of multi-location prediction systems of different kernels, averaged over 5 complete runs
of the 5-fold cross-validation applied on the combined set of single-localized and multi-localized proteins

Linear Polynomial RBF Laplace

F1 0.613 (± 0.016) 0.677 (± 0.033) 0.810 (± 0.017) 0.829 (± 0.002)

Acc 0.498 (± 0.016) 0.602 (± 0.031) 0.764 (± 0.017) 0.786 (± 0.002)

Table 3B. Comparison of the results of multi-location prediction systems, averaged over 5 complete runs
of the 5-fold cross-validation applied on the combined set of single-localized and multi-localized proteins

LKLoc BNCs

F1 0.829 (± 0.002) 0.81 (± 0.01)

Acc 0.786 (± 0.002) 0.76 (± 0.01)

Table 3C. Per-location based results, averaged over 5 complete runs
of the 5-fold cross-validation applied on the combined dataset

cyt (3785) nuc (2952) ex (1405) mem (1824) mi (870)

Recsi

LKLoc 0.829 (± 0.008) 0.818 (± 0.015) 0.818 (± 0.005) 0.800 (± 0.002) 0.753 (± 0.004)

MDLoc 0.825 (± 0.009) 0.830 (± 0.010) 0.780 (± 0.020) 0.822 (± 0.012) 0.773 (± 0.013)

BNCs 0.795 (± 0.011) 0.784 (± 0.017) 0.737 (± 0.022) 0.780 (± 0.014) 0.730 (± 0.025)

Presi

LKLoc 0.833 (± 0.004) 0.843 (± 0.005) 0.886 (± 0.009) 0.864 (± 0.001) 0.868 (± 0.005)

MDLoc 0.819 (± 0.013) 0.822 (± 0.014) 0.864 (± 0.020) 0.872 (± 0.014) 0.861 (± 0.024)

BNCs 0.809 (± 0.018) 0.832 (± 0.013) 0.912 (± 0.019) 0.900 (± 0.012) 0.885 (± 0.023)

Rec – Stdsi

LKLoc 0.890 (± 0.003) 0.764 (± 0.027) 0.837(± 0.009) 0.740 (± 0.004) 0.713 (± 0.009)

MDLoc 0.867 (± 0.015) 0.808 (± 0.021) 0.715 (± 0.030) 0.842 (± 0.017) 0.719 (± 0.028)

BNCs 0.861 (± 0.014) 0.736 (± 0.031) 0.652 (± 0.024) 0.805 (± 0.017) 0.664 (± 0.034)

Pre – Stdsi

LKLoc 0.855 (± 0.004) 0.814 (± 0.008) 0.907(± 0.009) 0.831(± 0.003) 0.868 (± 0.003)

MDLoc 0.854 (± 0.014) 0.783 (± 0.020) 0.839 (± 0.028) 0.882 (± 0.014) 0.843 (± 0.026)

BNCs 0.840 (± 0.011) 0.786 (± 0.026) 0.906 (± 0.022) 0.900 (± 0.015) 0.873 (± 0.034)

best performed kernel with that of the existing location
prediction systems. We trained our system using the
combined dataset and measured two set of results, one
for a combined set of single and multi-localized proteins
and one for multi-localized proteins only. Herein, all the

values of all metrics of our system are the average result
of 5 complete runs of the 5-fold cross-validation. More-
over, standard deviations of each metric of 5 complete
runs of the 5-fold cross-validation are shown in paren-
theses.



Prediction of protein subcellular localization using support vector machine with the choice of proper kernel 93

Table 4A.  Multi-location prediction results, averaged over 5 complete runs
of the 5-fold cross-validation, for multi-localized proteins only

LKLoc MDLoc BNCs YLoc+ Euk-mPLoc WoLF PSORT KnowPredsite

F1-label 0.741 (± 0.004) 0.71 (± 0.02) 0.66 (± 0.02) 0.68 0.44 0.53 0.66

Acc 0.700 (± 0.010) 0.68 (± 0.01) 0.63 (± 0.01) 0.64 0.41 0.43 0.63

Table 4B. Per-location based results, averaged over 5 complete runs of the 5-fold cross-validation,
for multi-localized proteins only

cyt (2374) nuc (2115) mem (586) ex (562) mi (360)

Recsi

LKLoc 0.750 (± 0.014) 0.776 (± 0.017) 0.557 (± 0.009) 0.590 (± 0.008) 0.527 (± 0.006)

MDLoc 0.750 (± 0.012) 0.776 (± 0.014) 0.527 (± 0.022) 0.547 (± 0.035) 0.519 (± 0.026)

YLoc+ 0.712 (± 0.009) 0.728 (± 0.011) 0.543 (± 0.018) 0.573 (± 0.026) 0.536 (± 0.031)

Presi

LKLoc 0.934 (± 0.003) 0.944 (± 0.0006) 0.870 (± 0.013) 0.917 (± 0.008) 0.868 (± 0.014)

MDLoc 0.911 (± 0.008) 0.929 (± 0.008) 0.807 (± 0.036) 0.833 (± 0.044) 0.832 (± 0.042)

YLoc+ 0.893 (± 0.010) 0.924 (± 0.008) 0.764 (± 0.029) 0.740 (± 0.053) 0.765 (± 0.033)

Rec – Stdsi

LKLoc 0.849 (± 0.004) 0.700 (± 0.034) 0.615 (± 0.020) 0.440 (± 0.009) 0.431 (± 0.017

MDLoc 0.817 (± 0.021) 0.746 (± 0.028) 0.588 (± 0.042) 0.385 (± 0.058) 0.388 (± 0.062)

YLoc+ 0.786 (± 0.020) 0.684 (± 0.015) 0.614 (± 0.042) 0.401 (± 0.037) 0.429 (± 0.060)

Pre – Stdsi

LKLoc 0.950 (± 0.002) 0.929 (± 0.001) 0.867 (± 0.013) 0.921 (± 0.006) 0.829 (± 0.013)

MDLoc 0.942 (± 0.009) 0.904 (± 0.014) 0.794 (± 0.039) 0.830 (± 0.046) 0.784 (± 0.057)

YLoc+ 0.935 (± 0.009) 0.914 (± 0.014) 0.730 (± 0.047) 0.771 (± 0.055) 0.670 (± 0.055)

Table 3A shows comparisons of the F 1 score and the
accuracy obtained by each kernel used in SVM for the
combined dataset. The table shows that SVM with La-
place kernel based system, termed LKLoc, performs
better than other kernels. In addition, Table 3B shows
comparative studies of the F 1 score and the accuracy ob-
tained by LKLoc with those obtained by other multi-loca-
tion predictors applied on the combined dataset (BNCs
as reported in Table 2 of Ramanuja Simha et al. (Simha
et al., 2014)). It is clear from this Table that LKLoc pro-
vides better accuracy than the existing systems.

Table 3C shows comparative study of the results of
per-location predictions applied on the combined dataset
of both single- and multi-localized proteins obtained by
LKLoc and those obtained by MDLoc and BNCs (Simha
et al., 2014, Simha et al. 2015). It is obvious from the
Table 3C, that in most of the cases the precision values
provided by LKLoc are somewhat higher than those ob-
tained by MDLocs and on the other hand, the recall pro-
vided by LKLoc has a little bit variation (up and down)
than those of MDLocs.

Table 4A shows the comparisons of the F 1-label
score and the accuracy obtained by the best performing
kernel (Laplace kernel in this case) with those obtained
by other multi-location predictors for multi-localized pro-
teins only (MDLoc, BNCs, YLoc+, Euk-mPLoc, WoLF
PSORT and KnowPredsite as reported in Table 1 of Ra-
manuja Simha et al. (Simha et al., 2015)). It can be no-
ted here that all the predictors mentioned above used
the same set of multi-localized proteins. The table shows
that the prediction based on SVM with the Laplace
kernel or LKLoc performs better than the existing top-
systems, including MDLoc, YLoc+, and BNCs which
have the best performance reported so far.

Table 4B shows the per-location prediction results
for multi-localized proteins obtained by LKLoc compared
with those systems reported by MDLoc (Simha et al.,
2015). Since the per-location predictions for the other
systems (BNCs, Euk-mPLoc, WoLF PSORT and Know-
Predsite) are not publicly available, we could not show
those findings. In Table 4B, the results are shown for
the five locations with the largest number of associated



M.A.M. Hasan, S. Ahmad,  M.K.I. Molla94

proteins. However, for each location si, we show Multi-
label-Precision (Presi) and Multilabel-Recall (Recsi) as well
as standard precision (Pre–Stdsi) and recall (Rec–Stdsi).
The results show that in almost all of the cases, these
four measures obtained from LKLoc are significantly
higher than those obtained for all protein locations using
MDLoc and YLoc+. 

Conclusion

In this research work, we evaluated the performance
of different kernels for SVM used in the protein sub-
cellular localization prediction in terms of various mea-
sures. The results indicate that the performance of the
SVM classification mainly depends on the type of kernels
and their parameters. Moreover, the obtained results also
justify the motivation of this work, i.e. only a single kernel
cannot be considered blindly for the SVM used in protein
subcellular localization prediction when optimal perfor-
mance is desired. Our results show that the LKLoc pro-
vides better performance than other kernel based systems
and other existing top classifiers (MDLoc, BNCs, YLoc+).
Research in protein subcellular localization prediction
using the SVM approach is still demanding due to its
better performance. The research community working
on the SVM based classification will benefit from the
results of this study. In the future, we will try to improve
the performance of the classifier by considering other
information such as location inter-dependencies in ad-
dition to feature information. Moreover, we shall make
efforts in our future work to provide a web-server for the
method presented in this paper. To sum up, we believe
that these findings may be extended to other biological
problems.
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