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Abstract

Erythrina senegalensis (Fabaceae) have been traditionally used in the treatment of microbial ailments, and the
specific agent mediating its efficacy has been investigated in several studies. In this study, the antimicrobial acti-
vity of purified E. senegalensis lectin (ESL) was analyzed. The phylogenetic relationship of the gene encoding
lectin with other legume lectins was also established to investigate their evolutionary relationship via comparative
genomics. Antimicrobial activity of ESL against selected pathogenic bacteria and fungi isolates was evaluated by
the agar well diffusion method, using fluconazole (1 mg/ml) and streptomycin (1 mg/ml) as positive controls for
fungi and bacteria sensitivity, respectively. Potent antimicrobial activity of ESL against Erwinia carotovora,
Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Aspergillus niger, Penicillium camem-
berti, and Scopulariopsis brevicaulis was observed, with inhibition zones ranging from 18 to 24 mm. Minimum
inhibitory concentrations of ESL ranged between 50 and 400 μg/ml. Primer-directed polymerase chain reaction
of E. senegalensis genomic DNA detected a 465-bp lectin gene with an open reading frame encoding a 134-amino
acid polypeptide. The obtained nucleotide sequence of the ESL gene shared high sequence homology: 100, 100,
and 98.18% with Erythrina crista-galli, Erythrina corallodendron, and Erythrina variegata lectin genes, respecti-
vely, suggesting that the divergence of Erythrina lectins might follow species evolution. This study concluded that
ESL could be used to develop lectin-based antimicrobials, which could find applications in the agricultural and
health sectors.
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Introduction

Plants contain a huge amount of bioactive compounds
that are being used worldwide for various purposes, es-
pecially in ethnomedicine. These compounds range from
a myriad of secondary and primary metabolites such as
flavonoids, alkaloids, polyphenols, and bioactive pro-
teins, which can be used in targeted therapy and treat-
ment of diverse microbial diseases (Van Holle and Van
Damme, 2018; Górniak et al., 2019; Othman et al., 2019;
Bilanda et al., 2020; Gupta et al., 2020; Taiwo et al.,
2020; Mammari et al., 2021; Sun et al., 2021). An in-
crease in microbial resistance and detrimental environ-

mental consequences associated with the use of chemi-
cal antimicrobial agents has also contributed to the
search for natural plant-based alternatives, especially
those with protein origin (Vandenborre et al., 2011;
Singh et al., 2019).

Lectins are unique proteins or glycoproteins, having
at least one domain devoid of catalytic activity and ca-
pable of binding specific glycan moieties reversibly
(Alen’kina et al., 2014; Nubi et al., 2021). These proteins
are heterogeneous in structures and proficient in aggluti-
nating or precipitating cells and carbohydrate-relate
structures via specific interactions (Singh et al., 2016;
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Adedoyin et al., 2021). Lectins mediate a wide range of
biological and biochemical processes in many organisms,
such as nitrogen fixation, cellular development, mito-
genesis, symbiosis, immunomodulation, and defense
(Smýkal et al., 2015; Osman and Konozy, 2017; Rambo
et al., 2019; Van Holle and Van Damme, 2019; Fonseca
et al., 2022a).

Belonging to the legume family (Fabaceae) and cha-
racterized by peculiar red flower coloration, the genus
Erythrina is widely distributed across the tropical and
subtropical regions of the world. Members of this genus
comprise more than one hundred species, which are rich
in many bioactive molecules. However, lectins have only
been detected in a few members of Erythrina (Focho
et al., 2009; Doughari, 2010; Otimenyin and Uzochukwu,
2010; Atsamo et al., 2013).

Erythrina senegalensis is generally used for ethno-
medicinal purposes in Africa, especially in the traditional
treatment of ailments such as arterial hypertension,
gastrointestinal disorders, leprosy, diabetes, and hemor-
rhoids (Doughari et al., 2010). Erythrina spp. possess
anxiolytic and anticonvulsant properties, especially in
the central nervous system (Focho et al., 2009). These
pharmacological activities of E. senegalensis are attribu-
table to bioactive molecules inherent in them (Atsamo
et al., 2013; Nembo et al., 2015; Nordström R, Malm-
sten et al., 2017; Armas et al., 2019; Van Holle and Van
Damme, 2019).

Evolutionary relationships and functional diversity of
genes and proteins are usually analyzed using phylo-
genetic analysis (Song et al., 2018). Exploring the simi-
larities between sequences by mapping the existing data
of characterized proteins belonging to a particular phylo-
genetic family tree can provide predictive insights into
the functions and biochemical properties of members
belonging to the family (Murphy et al., 2011). In the
present study, the antimicrobial activity of purified lectin
from E. senegalensis seeds was investigated, and phylo-
genetic analysis of the gene encoding lectin with other
legume lectins was carried out to identify their evolutio-
nary and functional relationship.

Materials and methods

Chemicals and reagents

Glutaraldehyde, bovine serum albumin (BSA), sugars
(glucose, lactose, maltose, mannose, sorbose, galactose,

N-acetylglucosamine, and mannitol), acrylamide, ammo-
nium persulfate, N,N,N ,N -tetramethylethylenediamine
(TEMED), sodium dodecyl sulfate, agarose, and coomas-
sie brilliant blue R250 were purchased from the Sigma
Chemical Company, St Louis, Missouri, USA. Sepharose
4B and Sephadex G-150 were bought from Pharmacia
Fine Chemicals, Uppsala, Sweden. Nutrient agar and
nutrient broth were from Lab M Ltd, Lancashire, United
Kingdom. Gel-loading dye (BioLabs®, B7025S), ethidium
bromide, deoxyribonucleoside triphosphates (dNTPs),
Taq polymerase, DNA master mix, 100-bp DNA ladder
(BioLabs®, NO551S), and ZYMO DNA Extraction Kit
were purchased from South Africa (Inqaba Biotech,
Hatfield Pretoria). All other reagents and chemicals used
in this study were of analytical grade.

Selected microbial species

Erwinia carotovora, Pseudomonas aeruginosa, Lacto-
bacillus acidophilus, Klebsiella pneumonia, Staphylococ-
cus aureus, Aspergillus niger, Fusarium species, Penicil-
lium camemberti, Scopulariopsis brevicaulis, Trichophy-
ton interdigitale, and Trichoderma species were obtained
from the culture collection of the Department of Micro-
biology, Obafemi Awolowo University, Ile-Ife, Nigeria.

Collection and identification of E. senegalensis seeds

The E. senegalensis plant was collected from a re-
growth forest located 7E31N9ON 4E31N36OE within the
Obafemi Awolowo University, Ile-Ife, Nigeria. Seeds
were identified at the IFE HERBARIUM, Department of
Botany, Obafemi Awolowo University, Ile Ife, Nigeria,
where the plant was deposited, with the voucher speci-
men number IFE-17749.

Purification and hemagglutinating activity 
of E. senegalensis lectin (ESL)

Purification and hemagglutinating activity analysis of
ESL were conducted as described in our previous study
(Kuku et al., 2012). Purification involves a combination
of ammonium sulfate precipitation, gel filtration on
a Sephadex G-150 column, and affinity chromatography
on a lactose-sepharose 4B column. In brief, E. senegalen-
sis seeds (50 g) were pulverized and defatted using pe-
troleum ether. The obtained flour was air-dried at room
temperature and extracted with 10 mM phosphate buf-
fered saline (PBS), pH 7.2 (1 : 10 w/v), at 4EC for 24 h.
The resulting mixture was centrifuged (6000 rpm,
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30 min), and the supernatant was collected as a crude
lectin extract. Hemagglutinating activity of lectin was
determined in a 96-well microtiter plate. The crude lec-
tin aliquot (100 μl) was serially diluted with PBS (100 μl),
and 50 μl of erythrocyte suspension (4% v/v) was added
to each well. The resulting mixture was left undisturbed
for 60 min at room temperature. Hemagglutinating acti-
vity was expressed as units taken to be the reciprocal of
the highest dilution that shows visible agglutination.
Specific activity was expressed as units per mg protein.
In the purification stage, the crude lectin extract was
subjected to 70% ammonium sulfate precipitation and
left overnight (4EC). The resulting precipitate was col-
lected by centrifugation (6000 rpm, 30 min). The re-
covered precipitate was resuspended in PBS, pH 7.2,
and dialyzed against PBS and distilled water for 48 h. An
aliquot (4 ml, approximately 28 mg protein) of ammo-
nium sulfate dialysate was loaded on the Sephadex G-150
column (2.5 × 40 cm) equilibrated with PBS. Fractions
(4 ml) were collected at a flow rate of 30 ml/h. Elution
was monitored at 280 nm, and the hemagglutinating
activity of the fractions was assayed. Active peak frac-
tions were pooled and dialyzed for 48 h. Then, an aliquot
(2 ml, approximately 12 mg protein) of the pooled Se-
phadex G-150 active fraction was layered on the Lactose-
Sepharose 4B column (1.5 × 10 cm) equilibrated with
PBS. Unadsorbed protein was washed with the equi-
libration buffer, and the adsorbed protein was eluted
with the same buffer containing 0.2 M lactose. Fractions
(1 ml) were collected at a flow rate of 20 ml/h. Elution
was monitored at 280 nm, and the hemagglutinating acti-
vity of the fractions was assayed. Active peak fractions
were pooled, dialyzed exhaustively (against PBS and
distilled water), lyophilized, and kept frozen at !20EC.
The protein concentration of ESL was determined at
each purification stage following the method of Lowry
et al. (1951). Purification was repeated several times to
obtain pure ESL in sufficient quantities for antimicrobial
study. The purity and molecular weight of ESL were
determined using sodium dodecyl sulfate–polyacryl-
amide gel electrophoresis (SDS-PAGE) on a 12.5% acryl-
amide gel using low-molecular-weight protein markers
(Nubi et al., 2021).

Analysis of antimicrobial activity of ESL

Agar well diffusion method was used to analyze the
antimicrobial activity of ESL against selected pathogenic

microorganisms (Cheesbrough, 2006). In brief, fungi
were cultivated on potato dextrose broth at 25EC for
48–72 h, whereas bacteria were cultivated on nutrient
broth at 37EC for 24 h. The microbial cell density of
both cultures was standardized (108 CFU/ml of 0.5 Mc-
Farland standards) at 600 nm. A sterile swab stick moi-
stened with the inoculum was spread on potato dextrose
agar (PDA) and Mueller Hinton agar (MHA) for fungi and
bacteria, respectively. Then, 6-mm-diameter wells were
bored equidistant from each other using a sterile cock bo-
rer into the respective agar media and filled with an equal
volume (50 μl) of ESL (0.1–0.4 mg/ml). Fluconazole
(1 mg/ml) and streptomycin (1 mg/ml) were used as the
positive control for fungi and bacteria sensitivity, res-
pectively, whereas PBS buffer was used as the negative
control. Plates were incubated at 25EC for 48–72 h for
fungi and 37EC for bacteria. Zones of inhibition were
measured in millimeters.

Minimum inhibitory concentration (MIC) of ESL

MIC analysis of ESL was carried out following the
method of Cheesbrough (2006). In brief, a serial dilution
of ESL was prepared. Aliquots (2 ml) of the different
concentrations were added to 18 ml of presterilized malt
extract agar and Sabouraud dextrose agar (SDA) for
bacteria and fungi at 40EC to achieve a final concentra-
tion regimen of 0.05 and 10 mg/ml, respectively. Res-
pective media were poured into sterile petri plates and
allowed to set. The surface of the media was dried under
laminar flow before streaking with 18-h-old bacterial and
fungal cultures. The plates were incubated at 37EC for
24 h and 25EC for up to 72 h for bacteria and fungi, res-
pectively, and then, they were examined for the pre-
sence or absence of growth. The MIC was taken as the
lowest concentration that prevented the growth of the
test microorganism.

Isolation of genomic DNA (gDNA) and polymerase chain
reaction (PCR) amplification of ESL gene

E. senegalensis gDNA was extracted using the ZYMO
Plant DNA Mini Kit (ZYMO Research, California, USA).
The purity of the isolated gDNA was evaluated by
measuring the absorbance quotient at 260 nm/280 nm,
and the concentration was determined using a Nanodrop
spectrophotometer (Beckman Coulter). For amplifica-
tion, an aliquot of 30 ng/μl gDNA was prepared via PCR.
Gene-specific primers were designed corresponding to
the conserved regions of the nucleotide sequences of
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Erythrina lectins (accession numbers: FJ8396683.2;
AY158072.1; X52782.1) available on the National Center
for Biotechnology Information (NCBI) database (http://
www.ncbi.nlm.nih.gov/nuccore) and then synthesized
(Inqaba Biotech, South Africa). PCR amplification was
performed in a 25 μl total reaction mixture containing
template gDNA (30 ng), 10 μM each of primers (for-
ward: 5N!TGGGGACGTAACAAAAGGAG!3N; reverse:
5N!CTGGCTTGGACTTTGTTGGT!3N), dNTPs (10 mM),
MgCl2 (25 mM), Taq polymerase (5 Units/μl; Promega),
buffers (5×), and deionized water. The PCR amplification
consisted of initial denaturation at 94EC for 5 min, fol-
lowed by 36 denaturation cycles of 30 s at 94EC, 30 s an-
nealing at 55EC, and 90 s extension at 56EC in a 96-well
Thermal Cycler (Eppendorf Master Cycler Nexus Gra-
dient 230), and a final 4-min extension at 72EC.

Confirmation of PCR products on agarose gel

Amplified products (amplicons) were separated on
agarose gel (1% w/v) and stained using ethidium bro-
mide (0.7 μg/ml). Electrophoresis of the PCR amplicons
was carried out using a 100-bp DNA ladder (Promega) at
60–90 V for 3 h. The gels were visualized, and the re-
sults were monitored using an ultraviolet (UV) trans-
illuminator gel documentation system (Bio Olympics).
The amplified product was recovered and purified using
a QIA quick gel extraction kit (Qiagen, Valencia, CA) ac-
cording to the manufacturer’s instructions.

Sequencing of the amplified gene

The purified PCR products were sequenced with an
Applied Biosystems (ABI) 3500XL automated sequencer
using both forward and reverse primers. The cleaned
products were injected into the Applied Biosystems ABI
3500XL Genetic Analyser with a 50-cm array, using
POP7.

Sequence alignment and phylogenetic analysis

A homology search of the ESL nucleotide sequence
in the GenBank database using the Basic Local Align-
ment Search Tool (BLAST search) was also conducted.
Sequence alignment with other plant lectins was ana-
lyzed using ClustalW. Nucleotide sequence alignment
results were used for phylogenetic analysis using the
MEGA7.0 software (Molecular Evolutionary Genetics
Analysis, version 7.0) program to analyze the evolutio-
nary relationships (Kumar et al., 2016). Integrity of the

phylogenetic tree was estimated using 1000 bootstrap
replicates.

Statistical analysis

Data were expressed as mean ± standard error. One-
way analysis of variance was used to determine the signi-
ficance of the findings, and P -values < 0.05 were con-
sidered statistically significant.

Results and discussion

Antimicrobial study

Legumes are rich in bioactive proteins and peptides,
including lectins with diverse biological functions, such
as playing key defense roles against invading microbial
pathogens (Mani-López et al., 2021; Fonseca et al.,
2022b). In the present study, homogeneous ESL was
obtained via the combination of ammonium sulfate pre-
cipitation and column chromatography techniques as re-
ported in our previous study (Kuku et al., 2012). E. sene-
galensis lectin has an estimated subunit molecular
weight of 35 kDa as confirmed by SDS-PAGE (Fig. 1). 
Konozy et al. (2003, 2012) revealed that the molecular
weights of E. lysistemon and E. speciosa lectins were 30
and 26.7 kDa, respectively, after SDS-PAGE analysis,
which is consistent with the findings of the present
study. Similarly, lectins with an estimated molecular
weight range of 26–30 kDa were also detected in Ery-
thrina crista-galli, Erythrina americana, Erythrina flabel-
liformis, Erythrina lysistemon, Erythrina rubrinerva, and
Erythrina vespertilio (Ortega et al., 1990; Bonneil et al.,
2004). The range of molecular weight is not surprising
as Erythrina lectins are made up of one-chain protomer
with a molecular weight of 27–35 kDa that forms a dimer
(Osman and Konozy, 2017).

In vitro antibacterial assay showed that ESL signi-
ficantly (P < 0.05) inhibits the growth of E. carotovora,
K. pneumonia, P. aeruginosa, and S. aureus at 0.4 mg/ml,
with inhibition zones ranging from 18 to 24 mm (Fig. 2).
E. carotovora and S. aureus were most susceptible to the 
protein, with inhibition zones of 20 ± 0.33 and 24 ±
± 0.33 mm, respectively (Table 1). However, L. acido-
philus  was resistant to lectin at this concentration, which
suggests that ESL might be devoid of binding affinity to
the glycomoieties expressed on the membrane of this or-
ganism. The MIC of ESL against susceptible bacteria
ranged from 0.05 to 0.2 mg/ml (Table 1).
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Fig. 1. Sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis electrophoretogram of Erythrina senegalensis lectin

and standard protein markers (15–170 kDa)

Lectins have high specificity, enabling them to iden-
tify unique sugar structures (Adedoyin et al., 2021). This
unique property allows them to mediate specific micro-
bial binding, innate immune response, and cell-to-cell
signaling, coupled with host–pathogen interactions (Pa-
iva et al., 2010; Procópio et al., 2017). While eliciting
antibacterial activities, plant lectins may cause pore
formation, followed by interactions with definite bac-
terial cell wall components. Potential targets include
lipopolysaccharides, peptidoglycans, teichoic and tei-
churonic acids, as well as muramic- and muramyl-asso-
ciated structures. These interactions attract extensive
interest due to arrays of exposed microbial glycomoie-
ties that are potential lectin-binding sites (Gomes et al.,
2013; Singh et al., 2016). In addition, lectins can form
aggregates with microbial glycoconjugates, which might
block bacteria binding sites, thus preventing host
infection (Charungchitrak et al., 2011). Usually associa-
ted with their carbohydrate recognition domains (CRDs),
antibacterial mechanisms may also include restricting
microbial invasion, growth, migration, and competitive
inhibition of microbial proteins from specific receptors
(Paiva et al., 2010; Breitenbach Barroso Coelho et al.,
2018; Monika et al., 2020).

Antibacterial activity exhibited by ESL in the present
study was quite impressive as legume lectins were toxic
to bacterial pathogens. This is attributable to inter-

actions involving inherent aromatic amino acids and
hydrogen bonding between hydroxyl oxygen of sugars
and lectin CRD (Dias et al., 2015; El-Araby et al., 2020;
Santana et al., 2022). Santana et al. (2022) showed that
lectin isolated from the tropical legume Cratylia argentea
elicited potent toxicity toward Listeria monocytogenes
by reducing its systemic loads. El-Araby et al. (2020)
showed that purified lentil and pea lectins inhibited the
growth of S. aureus and P. aeruginosa, with inhibition
zones of 35 and 33.4 mm, respectively, as against 20 and
22 nm manifested by ESL in the present study. As
reported by Krishnaveni et al. (2022), lectins from the
legumes Cicer arietinum Black (CiarBL) and Prunus
dulcis nut raw (PruDuNRL) showed potent antibacterial
activity at 100 mg/ml against Streptococcus oralis,
Streptococcus pyogens, Propionibacterium acnes, and S.
aureus. Similarly, lectins from other legumes such as
Canavalia ensiformis, Trigonella foenumgraecum, Ara-
chis hypogaea, Cajanus cajan, Pisum sativum, and Pha-
seolus vulgaris inhibited Streptococcus mutans-induced
biofilm formation, supporting the antibacterial proper-
ties of these quintessential bioactive proteins (Islam
et al., 2012; Lagarda-Diaz et al., 2017).

ESL antibacterial activity reported in the present
study compared favorably with the results of specific clas-
sical antimicrobials including streptomycin, kasugamycin,
chloramphenicol, and oxytetracycline, against pathogenic
bacteria: S. aureus, Enterococcus faecalis, Escherichia
coli, K. pneumonia, Erwinia amylovora, P. aeruginosa,
Proteus vulgaris, Hafnia alvei, Serratia marcescens, S. au-
reus, and Micrococcus luteus (Ulagesan and Kim 2018;
Al-esnawy et al., 2021; Slack et al., 2021).

Findings of the present study showed that ESL signi-
ficantly (P < 0.05) inhibited the hyphal growth of A. ni-
ger, P. camemberti, and S. brevicaulis at 0.4 mg/ml, with
inhibition zones ranging between 18 and 19 mm (Fig. 3).
The MIC obtained for the susceptible fungi ranged be-
tween 0.2 and 0.4 mg/ml. The hyphal growth of S. bre-
vicaulis was most inhibited by ESL with an inhibition
zone of 19 ± 0.76 mm (Fig. 3). However, T. interdigitale
and Trichoderma spp. were resistant to lectin at this
concentration (Table 2). This is not surprising as legume
lectins are reported to be moderate antifungals (Ynalvez
et al., 2021). The growth inhibitory activities of lectins
vary between fungal species; however, their mechanism
of action is poorly understood (Yan et al., 2005; Araújo 
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Erwinia carotovora Lactobacillus acidophilus

Klebsiella pneumonia Pseudomonas aeruginosa Staphylococcus aureus

Zone of inhibition

Fig. 2. Plates showing the antibacterial sensitivity of Erwinia senegalensis  lectin
against Erwinia carotovora (EC), Pseudomonas aeruginosa (PA), Lactobacillus
acidophilus  (LA), Klebsiella pneumonia (Kpn), and Staphylococcus aureus  (SA)

Table 1. Sensitivity pattern and minimum inhibitory concentration exhibited
by Erythrina senegalensis lectin against bacteria isolates

Bacteria isolates Zone of inhibition
[mm]

Streptomycin
[mm] [mg/ml]

MIC
[mg/ml]

Erwinia carotovora 20 ± 0.33 19 ± 0.12 0.05

Pseudomonas aeruginosa 18 ± 0.58 22 ± 0.41 0.2

Lactobacillus acidophilus 0.0 ND ND

Klebsiella pneumonia 19 ± 0.67 18 ± 0.53 0.2

Staphylococcus areus 24 ± 0.33 20 ± 0.38 0.1

   Data were expressed as mean ± standard error (n = 3); ND – not detected

Fig. 3. Plate showing the antifungal sensitivity of Erythrina
senegalensis lectin against Aspergillus niger (AN), Fusa-
rium species (F), Penicillium camemberti (PC), Scopula-
riopsis brevicaulis (SB), Trichophyton interdigitale (Ti),

and Trichoderma species (Tr)

et al., 2010; Lam and Ng, 2011; Del Rio et al., 2020).
This is because plant lectins cannot suppress fungal
growth directly since they do not penetrate the cell wall
or cell membrane to reach the cytoplasm (Lagarda-Diaz
et al., 2017). Despite this, indirect responses induced by
lectin’s attachment to key carbohydrate structures on

the fungal surface have been observed in fungal survival
(Wong et al., 2010). These structural targets include
fungal cell wall chitin components. Specific interactions
might result in the inhibition of cell wall synthesis, dis-
solution of the fungal cell wall, or cell metastasis, re-
sulting in cell death (Lam and Ng, 2011; Breitenbach
Barroso Coelho et al., 2018). Similarly, they can also
associate with fungal hyphae, suppressing growth be-
cause of poor nutrient absorption and spore germination
or predisposing the target organism to a certain stress
condition by inducing detrimental morphological chan-
ges that ultimately lead to cell death (Van Parijs et al.,
1991; El-Araby et al., 2020).

Consistent with the present findings, Sitohy et al.
(2007) and Devi et al. (2013) reported that at 100 mg/ml
lectins isolated from P. sativum and Pongamia glabra
inhibited the growth of Candida albicans, Aspergillus
flavus, Trichoderma viride, and Fusarium oxysporum.
Yan et al. (2005) showed that a lactose-specific lectin
from the legume Astragalus mongholicus also inhibited
the growth of Botrytis cincerea, F. oxysporum, Colleto-
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1000 bp

500 bp ESL-465 bp

Table 2. The sensitivity pattern and minimum inhibitory concentration exhibited
by Erythrina senegalensis lectin against fungal isolates

Fungal isolates 
Zone of inhibition

[mm] 
Fluconazole

[mm] [mg/ml]
MIC

[mg/ml]

Aspergillus niger 18 ± 0.88 20 ± 0.88 0.4

Fusarium sp. 0.0 ND ND

Penicillium camemberti 18 ± 0.70 22 ± 0.50 0.2

Scopulariopsis brevicaulis 19 ± 0.76 18 ± 1.41 0.2

Trichophyton interdigitale 0.0 ND ND

Trichoderma sp. 0.0 ND ND

 Data were expressed as mean ± standard error (n = 3); ND – not detected

trichum spp., and Drechslera turcica at a concentration
range of 100–200 μg. Plant lectins have also been re-
ported to cause lethal hypersensitivity reactions by trig-
gering specific cytokines while mediating their antifungal
activity (Kanzaki et al., 2008). Similar to ESL, poly-
myxin, a peptide-based antifungal, has been reported to
inhibit the growth of C. albicans, Cryptococcus neo-
formans, and Fusarium spp. (Hsu et al., 2017).

Corresponding bioactivities of ESL have also been
reported in lactose-binding lectins from Chondrilla cari-
bensis and Bufo arenarum (Sánchez Riera et al., 2003;
Marques et al., 2018). This suggests that the antibac-
terial and antifungal activities of ESL might be related to
its sugar specificity, as legume lectins are emerging as
promising molecules for designing novel therapeutics
(Barbosa et al., 2021).

Sequence and phylogenetic analysis

Many plant families contain homologous proteins,
such as lectins, that have a common biological function
but different specificity toward substrates (Kalinina
et al., 2004). This is observed in the complexity of lectin
gene organization as variations exist between species.
Available data on legume lectin structures suggest that
they are closely related proteins (Rougé and Risler,
1990). Furthermore, their homology also indicates that
they are well conserved during evolution (Sparvoli et al.,
2001; Lioi et al., 2003). To investigate the evolutionary
relationship of ESL with other plant lectins, a compara-
tive analysis of the ESL gene was carried out with plant
lectin families in a phylogenetic framework. gDNA of
E. senegalensis seed was extracted. The gene encoding
ESL was isolated using specific primers and analyzed 

Fig. 4. Agarose gel electrophoresis of the polymerase chain
reaction amplification product of Erythrina senegalensis lectin
gene. Standard 100-bp DNA ladder (Lane 1) and amplified

ESL-465 (Lane 2)

using the BLAST. One set of primers detected the lectin-
coding gene of E. senegalensis (ESL) via direct PCR
analysis. Agarose gel electrophoresis of the PCR pro-
ducts revealed a distinct amplicon fragment (Fig. 4). The
lectin gene after Sangers sequencing showed a 465-bp
consensus sequence designated as ESL-465.

The creation of a multiple-sequence alignment maxi-
mizes the chance of positional homology between nu-
cleotides or amino acids by establishing gaps in the evo-
lutionary comparisons of primary sequence data (Tala-
vera and Castresana 2007). BLAST analysis of the
ESL-465 nucleotide sequence against nucleotide sequen-
ces of plant lectins available in the NCBI database re-
sulted in a significant alignment at 100% nucleotide
identity with Erythrina variegata lectin (accession num-
ber: FJ839683.2), 100% nucleotide identity with E. cris-
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Fig. 5. Multiple-sequence alignment of Erythrina senegalensis lectin nucleotide sequence with related plant lectin genes

Table 3. Translated amino acid sequence of ESL465 gene

ESL00A-465

Translated amino acid sequence
(134 amino acids)

WGRNKRRVWGFTTHQDSKWHAGLGLNGPNSIYTCAHLGDHRHRQLNEILLFHTTLF
HTTLHTPTPRWFSILYGTNKQVQQSPSQLKVMDTSEYSTTQNRITHTKHLLLSLTLSV
THGTLPRFHTLESMSTPFDP

Fig. 6. Maximum likelihood phylogenetic tree of ESL-465 and other legume lectin genes; phylogenetic analysis was performed
using the MEGA 7.0 program, and a consensus tree was constructed using the neighbor-joining method with 1000 replicate

bootstrap values
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ta-galli lectin (accession number: AY158072.1), and
98.18% nucleotide identity with Erythrina coralloden-
dron lectin (accession number: X52782.1) (Fig. 5). This
suggests that the lectin gene might be conserved within
the Erythrina genus. Analysis of sequence variations or
similarities provides insights into their structural diver-
gence and evolution (Williams and Lovell, 2009). Fin-
dings of the present study also showed a profound nu-
cleotide alignment at 98.5, 68.24, and 65.88% nucleotide
identity with Astragalus falcatus, Phaseolus oligosper-
mus, and Phaseolus lunatus lectin genes, respectively.
Although information regarding the bioactivity of lectins
from A. falcatus, P. lunatus, P. oligospermus, E. crista-
galli, E. variegata, and E. corallodendron is scarce in the
literature, the high sequence homology reported for
these proteins with ESL might suggest their potential
antimicrobial activities. The translation of the ESL-465
nucleotide sequence to the amino acid sequence re-
sulted in a sequence of 134 amino acids (Table 3), which
is within the amino acid composition range of legume
lectins (Osman and Konozy, 2017).

Recently, functional and structural analysis of in-
dividual proteins is becoming more practical via phylo-
genetic analysis (Song et al., 2018). To elucidate the
gene structure and construction of the gene family, nu-
cleotide and/or amino acid sequences can be used. This
makes the knowledge of protein sequences in predicting
evolutionary relationships acceptable, suggesting that
proteins of the same family might, to a greater extent,
exhibit similar biological activities (Dey and Meyer,
2015; Xie et al., 2015; Li et al., 2016; He, et al., 2017).
By multiple-sequence alignment using ClustalW, the evo-
lutionary relationship between the E. senegalensis gene
(ESL-465) and other plant lectins was revealed (Fig. 6).
The analysis revealed that ESL-465 formed a cluster
with other lectin genes from different leguminous fami-
lies. This is not surprising as legume lectins are uniquely
closely related homologous proteins, which are well con-
served during evolution (Lioi et al., 2006; Lagarda-Diaz
et al., 2017).

Conclusion

Several studies reported that lectins from the Le-
guminosae family have unique bioactivities, including
toxicity toward pathogenic bacteria and fungi. In this
study, E. senegalensis seed lectin elicited impressive

antimicrobial activity against E. carotovora, P. aerugi-
nosa, K. pneumonia, S. aureus, A. niger, P. camemberti,
and S. brevicaulis. The phylogenetic analysis of the ESL
gene also showed its evolutionary relationship with
other plant lectins (mostly legumes), suggesting the po-
tential antimicrobial activities of these lectins. However,
further research on the antimicrobial and structural
properties of these lectins is needed to confirm these
findings. Furthermore, lectin can serve as a potential
target for developing practical applications in agricul-
ture, health, and even pharmaceutical research.
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