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Abstract

Leptin is a versatile hormone involved in many biological functions, including controlling body weight, energy
homeostasis, reproduction, and immune function. Though exhaustive studies were performed on the bovine LEP
gene, no efforts have been made to comprehensively and systematically analyze single nucleotide polymorphisms
(SNPs) in its coding sequence. The present study was conducted to identify the most deleterious nonsynonymous
SNPs (nsSNPs) of the bovine LEP gene. SNPs retrieved from the dbSNP database were investigated using va-
rious computational tools, including SIFT, PolyPhen-2, PANTHER, PROVEAN, SNAP2, I-Mutant2, mCSM, SDM,
DUET, Cobalt, SPPIDER, ConSurf, and MutPred. A total of 28 nsSNPs were considered for the present study.
Only 4 nsSNPs, namely, R66M, D186G, C191S, and C191G were found to be deleterious by all the used common
nsSNP prediction tools and affected leptin protein structure, function, and biological stability. These variants were
located in very highly conserved positions, and thus mutations in these amino acid positions have deleterious evo-
lutionary consequences. The findings of the present study proved that R66M, D186G, C191S, and C191G nsSNPs
have the most deleterious consequences on both the structure and the function of bovine leptin, with a special
emphasis on the remarkable effects of the last two nsSNPs on the breakage of the disulfide linkage which may
lead to a variety of deleterious consequences of this disturbed three-dimensional  structure on bovine life and per-
formance. This study provides the first comprehensive computation of the damaging effects of nsSNPs on leptin
in bovines. 
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Introduction 

One of the most prominent hormones that provides
a hotspot indication for numerous metabolic traits of
cattle is leptin. Leptin is a hormone that participates in
the regulation of body weight by maintaining a balance
between food intake and energy expenditure by infor-
ming the brain to change the stored levels of energy
(Zhou et al., 2009). Leptin plays a vital role in the regula-
tion of feed intake and energy metabolism in cattle
(Liefers et al., 2005). In addition to its remarkable role
in controlling appetite (Yadav et al., 2011), leptin has
other noticeable roles in regulating reproduction,
growth, body composition, and immunity (Saleem et al.,
2015). Leptin is encoded by the LEP gene, which is of
about 20 kb. It consists of three exons separated by two

introns, and the exonic portion of the LEP gene covers
about 15 kb of the bovine genome. Actually, the first
exon is truncated in the mature blood circulating hor-
mone. Meanwhile, the other two exons produce fully ma-
ture 167 residues by excising the first 24 signal-amino-
acid residues to produce 16 kDa of blood circulating
leptin (Liefers, 2004). Leptin contains a distinctive
three-dimensional (3D) four-α-helix bundle structure of
A-B-C-D pattern (Kline et al., 1997). This structure is ar-
ranged in four sequentially similar, antiparallel, left-hand
twisted α-helice bundles that are connected by two cross-
over links, alongside one short loop (Gutierrez et al.,
2009). In addition to the four main helices, an extra frag-
ment known as helix E, which is a distorted short helix,
is also present in the structure. Helix E is found in the
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loop linking helices C and D. Moreover, leptin has one
disulfide bond that connects two cysteine residues
(Cys141 and Cys191) within the C and D helices to form
a unique kink. This extending loop has been proven to
be very crucial for the structural stability and integrity
and, therefore, the biological activity of leptin (Haglund
et al., 2012). Hence, any missense mutation that chan-
ges this highly organized 3D structure of leptin may
have deleterious outcomes on many critical metabolic
pathways this hormone is involved in. It was recently
reported that many missense mutations have several
effects on the corresponding proteins due to a single
amino acid substitution (Borgio et al., 2016; Al-Shuhaib
et al., 2017) or due to the substitution of the transcrip-
tion factors (Liao and Lee, 2010; Abdulazeez et al.,
2019), or due to other reasons (Prokop et al., 2012). It
is widely acknowledged that silent mutations have a high
potential to cause alterations in protein expression, con-
formation, and function (Sauna and Kimchi-Sarfaty,
2011). However, mutations within introns and other non-
coding loci do not substitute amino acid sequences. Con-
versely, a nonsynonymous single nucleotide polymor-
phism (nsSNP), which is present within the exon of
a gene, is responsible for the incorporation of an alter-
native amino acid and known to be one of the main cau-
ses of the possible alterations in the mode of action of
proteins. However, each amino acid alteration has its own
consequences regarding its position and identity in the 3D
structure of leptin. Accordingly, it is important to diffe-
rentiate these consequences computationally (Al-Shuhaib
et al., 2018). Noteworthy, several missense mutations
have been discovered in this highly studied leptin pro-
tein (Liefers et al., 2004; Matteis et al., 2012); however,
no comprehensive study has been presented to predict
the final consequences of whole nsSNPs in leptin. There-
fore, this study was designed to provide the first compu-
tational prediction of the most deleterious missense 
mutations in bovine leptin.

Materials and methods

Dataset used for SNP annotation 

Bovine (Bos taurus ) leptin sequence with National
Center of Biotechnology Information (NCBI) accession
number XP_010802755.1 was the input FASTA sequen-
ce for the present study. The dbSNP  database was used
to retrieve the nsSNP LEP gene for this study (https: 

Table 1. Distribution of the retrieved SNPs of the bovine LEP
gene. SNPs in boldface are the non-synonymous SNPs that

were selected for the present comprehensive study

Type
of SNP Type of SNP Number

of SNPs

Approximate
percentage

of SNPs
[%]

1 near 5N end SNPs 73 7.2

2 5N UTR SNPs 3 0.3

3 nsSNPs 28 2.7

4 sSNPs 13 1.3

5 intronic SNPs 646 63.3

6 3N UTR SNPs 239 23.4

7 near 3N end SNPs 18 1.8

Total 1020 100

//www.ncbi.nlm.nih.gov/projects/SNP/). The retrieved
SNPs were classified into several types as mentioned in
(Table 1). The current study was focused only on the
analysis of the SNPs that substitute amino acids sequen-
ces, nsSNPs or amino acid variants. A total of 28 nsSNPs
distributed over 3 exons of the LEP gene were retrieved
(Table 2). Subsequently, a variety of state-of-the-art in si-
lico tools were used to assess the consequences of these
nsSNPs on the structure, function, and stability of leptin. 

Finding deleterious nsSNPs by SIFT, PANTHER,
Polyphen-2, PROVEAN, and SNAP2 

The structural and functional consequences of all re-
trieved nsSNPs in the bovine leptin protein were analyzed
by several in silico tools, including SIFT (Sorting Intole-
rant from Tolerant SNPs) (Ng and Henikoff, 2003), PAN-
THER (Protein Analysis Through Evolutionary Relation-
ship) (Tang and Thomas, 2016), Polyphen-2 (Polymor-
phism Phenotyping v2) (Adzhubei et al., 2013), PRO-
VEAN (Protein Variation Effect Analyzer), and SNAP2
(Smigielski et al., 2000). Substitutions predicted by SIFT
that had a tolerance index of less than 0.05 were pre-
dicted to be “intolerant” or “deleterious”; those greater
than or equal to 0.05 were predicted to be “tolerated”
(Ng and Henikoff, 2003). The expected PANTHER score
of each nsSNP was based on a threshold of 450 my, or
estimated preservation time. Thus, an nsSNP was classi-
fied as “probably damaging” (time > 450 my), 'possibly
damaging' (450 my > time > 200 my), and “probably be-
nign” (time < 200 my) (Tang and Thomas, 2016). Three
common scores were obtained from Polyphen-2, “pro-



A comprehensive in silico prediction of the most deleterious missense variants in the bovine LEP gene 431

Table 2. The position and distribution of nsSNPs in bovine leptin protein

Number
Chromosome

number
4 position

Exonic
position dbSNP ID nsSNP

1 93249846 exon No. 1 rs448185719 M1L

2 93249850 exon No. 1 rs460213906 E2V

3 93249852 exon No. 1 rs478688866 P3A

4 93249856 exon No. 1 rs445876293 R4L

5 93249858 exon No. 1 rs464306478 R5G

6 93249867 exon No. 1 rs477404171 G8R

7 93249871 exon No. 1 rs469453331 I9N

8 93249889 exon No. 1 rs455111977 A15G

9 93262003 exon No. 2 rs29004487 Y32F

10 93262056 exon No. 2 rs29004488 C50R

11 93262101 exon No. 2 rs436985239 T65A

12 93262105 exon No. 2 rs482037251 R66M

13 93263939 exon No. 3 rs475359339 H91N

14 93263940 exon No. 3 rs442451048 H91P

15 93263979 exon No. 3 rs29004508 A104V

16 93264009 exon No. 3 rs525274306 P114H

17 93264036 exon No. 3 rs380222501 N123S

18 93264107 exon No. 3 rs479601164 R147G

19 93264127 exon No. 3 rs440180195 E153D

20 93264152 exon No. 3 rs469111163 S162P

21 93264169 exon No. 3 rs518320795 E167D

22 93264205 exon No. 3 rs434902010 Q179H

23 93264207 exon No. 3 rs453354732 D180A

24 93264224 exon No. 3 rs465539127 D186Y

25 93264225 exon No. 3 rs432552158 D186G

26 93264233 exon No. 3 rs457585073 P189T

27 93264239 exon No. 3 rs442437081 C191S 

28 93264239 exon No. 3 rs442437081 C191G

bably damaging”, “possibly damaging”, and “possibly be-
nign” based on the scores that ranged from “0” to “1”
(Adzhubei et al., 2013). PROVEAN allowed for a balan-
ced separation between neutral and deleterious amino
acids by relying on a threshold of –2.5, i.e., the nsSNP is
“deleterious” when it scores # –2.5 and is “neutral”
when it scores > –2.5 (Choi et al., 2012). SNAP2 gene-
rated automatic grading that ranged from “damaging”
(score > zero) to non-damaging “neutral” (score < zero)
and (Smigielski et al., 2000).

Assessment of nsSNP effect on protein stability by using
I-Mutant 2.0, mCSM, SDM, and DUET 

To obtain a better assessment of the stability of the
bovine leptin protein impacted by missense mutations,
the retrieved nsSNPs were analyzed using several tools,
including I-Mutant 2.0 (Capriotti et al., 2005), mCSM
(Pires et al., 2012), SDM (Worth et al., 2012), and
DUET (Pires et al., 2014). In the case of I-Mutant 2.0,
the input data were FASTA sequences of the referring
leptin protein, whereas the input data in mCSM, SDM,
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and DUET were submitted as protein data bank (PDB)
files. In all prediction cases, the submitted file of the
referring leptin protein was computed along with its
amino acid substitutions and analyzed in terms of free
energy change (ΔΔG) values (kcal/mol). Negative values
of ΔΔG were destabilizing, while positive values of ΔΔG
were stabilizing to the 3D structure of the altered pro-
teins.

Identifying evolutionary, conserved, and functional
regions by using NCBI COBALT, ConSurf, SPPIDER, 
and MutPred tools

The evolutionary, conserved regions were initially
identified using a multiple sequence alignment viewer
1.5.2 and the NCBI COBALT tool (https://www.ncbi.
nlm.nih.gov/tools/cobalt/cobalt.cgi). The bovine LEP ge-
ne was manually compared with sequences from seven-
teen selected sources of eutherian mammalian DNA, in-
cluding Homo sapiens (human), Pan troglodytes (chim-
panzee), Gorilla gorilla gorilla (gorilla), Pongo abelii
(orangutan), Macaca mulatta (macaque), Pan paniscus
(bonobo), Papio Anubis (olive baboon), Ovis aries
(sheep), Capra hircus (goat), Equus caballus (horse),
Sus scrofa (pig), Canis lupus familiaris (dog), Felis catus
(cat), Oryctolagus cuniculus (rabbit), Callithrix jacchus
(marmoset), Rattus norvegicus (rat), and Mus musculus
(mouse). In ConSurf tool, both homology-based amino
acid sequence alignment and empirical, Bayesian algo-
rithm-based calculations were made to predict the evo-
lutionary status of the position of each amino acid resi-
due (Ashkenazy et al., 2010). SPPIDER, a virtual, web-
based server that belongs to the POLYVIEW prediction
system (http://polyview.cchmc.org/polyview3d.html),
was used to compare the conservative evolutionary sta-
tus of bovine leptin. Subsequently, the specific role of
the observed harmful nsSNPs and their potential effect
on protein functionality were analyzed using the Mut-
Pred tool (Pejaver et al., 2017). In all prediction cases,
the referring amino acid sequences of leptin protein
were submitted in FASTA format.

3D modeling of the virtual protein structure

Whole amino acid sequences of bovine leptin were
retrieved from the NCBI web server. The UniProtKB/
Swiss-Prot entry number of this protein is P50595. Since
no matching PDB entries for the full 3D structure of lep-
tin were found (http://www.uniprot.org), a 3D structure
of bovine leptin was generated online by the RaptorX

software (Källberg et al., 2012). The observed substitu-
tions within its corresponding altered proteins were
virtually visualized using the PyMol-v1, 7.0.1 tool (www.
shrodinger.com). 

Prediction of nsSNP participation in ligand binding sites
through FTsite tool

The FTsite machine is an online server that was
utilized to predict ligand binding sites of bovine leptin
(http://ftsite.bu.edu). It recognizes the binding sites pre-
cisely, and provides a structure-based explanation of
functional relationships among proteins (Ngan et al.,
2012). The query protein sequence data were submitted
as RaptorX-built PDB files.

Results

In this study, a series of in silico prediction analysis
methods were used to analyze all the amino acid substi-
tutions in the coding region of the bovine LEP  gene
(gene ID 280836). Therefore, all the nsSNPs were re-
trieved from dbSNP database. By using several computa-
tional tools and checking their effect on the structure,
the function, the stability of bovine leptin as well as the
evolutionary conservation scores regarding the corres-
ponding amino acid residues in bovine protein were de-
termined. 

Out of a total of 1020 SNPs retrieved for the bovine
LEP gene, 239 in 3N UTR, 3 near the 5N end of the co-
ding sequence, 646 in introns, 18 near the 3N end of the
coding sequence, and 13 synonymous SNPs, and only
nsSNPs that represented 3% (28) of the total SNPs,
were selected for further analysis (Fig. 1A). After their
retrieval, different software tools were used for the
structural and functional annotation of these nsSNPs.
The used software tools included several state-of-the-art
bio-computational tools, including SIFT, PolyPhen, PRO-
VEAN, SNAP2, PANTHER, I-Mutant 2.0, mCSM, SDM,
and DUET, which were used to evaluate the potential
consequences of the deleterious effects of SNPs on
leptin structure, function, and stability. By comparing
the cumulative computations of these methods, the de-
gree of severity of the damaging consequences of each
particular nsSNP was verified. Though the SIFT tool is
commonly used to provide evolutionary data on the im-
pact of each variant on both protein structure and func-
tion (Ng and Henikoff, 2006), its insufficiency is attribu-
ted to the low availability of stored non-human data in



Table 3. The in silico analysis of the observed nonsynonymous SNPs on bovine leptin using several bioinformatics tools. The boldface nsSNPs refer to the totally damaging effect as
predicted by PolyPhen-2/PANTHER/PROVEAN/SNAP2/Mutant-2/mCSM/SDM/DUET prediction tools. The nsSNPs are arranged in ascending order, from the least to the most

deleterious consequences on the altered protein

nsSNP SIFT PolyPhen-2 PANTHER PROVEAN SNAP2 Mutant-2 mCSM SDM DUET Score/
Prediction

E2V
0.00 Low Confidence Prediction not scored not scored 0.000 !36 0.47 not scored not scored not scored score

affect protein function unknown invalid SNP neutral neutral increase unknown unknown unknown prediction 

M1L
0.00 Low Confidence Prediction not scored not scored 0.000 !10 !0.56 not scored not scored not scored score

affect protein function unknown invalid SNP neutral neutral decrease unknown unknown unknown prediction 

P3A
0.00 Low Confidence Prediction not scored not scored 0.000 !6 !0.76 not scored not scored not scored score

affect protein function unknown invalid SNP neutral neutral decrease unknown unknown unknown prediction 

R4L
0.00 Low Confidence Prediction not scored not scored 0.000 2 0.29 not scored not scored not scored score

affect protein function unknown invalid SNP neutral effect decrease unknown unknown unknown prediction 

R5G
0.00 Low Confidence Prediction not scored not scored 0.000 58 !0.73 not scored not scored not scored score

affect protein function unknown invalid SNP neutral effect decrease unknown unknown unknown prediction 

G8R
0.00 Low Confidence Prediction not scored not scored 0.000 73 0.43 not scored not scored not scored score

affect protein function unknown invalid SNP neutral effect decrease unknown unknown unknown prediction 

I9N
0.00 Low Confidence Prediction not scored not scored 0.000 66 !0.44 not scored not scored not scored score

affect protein function unknown invalid SNP neutral effect decrease unknown unknown unknown prediction 

A15G
0.00 Low Confidence Prediction not scored not scored 0.000 !58 !0.25 not scored not scored not scored score

affect protein function unknown invalid SNP neutral neutral decrease unknown unknown unknown prediction 

Y32F
1.0 0.000 1 !0.278 !54 !0.26 not scored not scored not scored score

tolerated benign benign neutral neutral decrease unknown unknown unknown prediction 

C50R
0.94 0.000 1 2.547 !19 !0.31 0.333 0.52 0.718 score

tolerated benign benign neutral neutral decrease stabilize stabilize stabilize prediction 

D180A
0.08 0.017 176 !3.017 6 0.18 0.162 1.48 0.667 score

tolerated benign benign deleterious effect increase stabilize stabilize stabilize prediction 

R147G
0.76 0.002 97 !1.512 30 !1.63 !0.06 0.47 0.224 score

tolerated benign benign neutral effect decrease destabilize stabilize stabilize prediction 

E153D
0.40 0.005 176 !0.633 7 !0.30 !0.302 !0.41 !1.19 score

tolerated benign benign neutral effect decrease destabilize destabilize destabilize prediction 



T65A
0.08 0.005 220 !1.558 !9 !2.14 !0.654 2.06 0.168 score

tolerated benign damaging neutral neutral decrease destabilize stabilize stabilize prediction 

P114H
0.21 0.064 176 !5.513 13 !1.90 !0.117 !0.39 0.039 score

tolerated benign benign deleterious effect decrease destabilize destabilize stabilize prediction 

D186Y
0.00 Low Confidence Prediction 1.000 220 !6.207 69 0.05 0.164 0.67 0.114 score

affect protein function damaging damaging deleterious effect increase stabilize stabilize stabilize prediction 

N123S
0.02 Low Confidence Prediction 0.798 220 !3.134 !9 !1.12 !0.27 0.43 0.045 score

affect protein function damaging damaging deleterious neutral decrease destabilize stabilize stabilize prediction 

S162P
0.02 Low Confidence Prediction 0.998 220 !3.265 82 0.25 !0.214 0.3 0.09 score

affect protein function damaging damaging deleterious effect increase destabilize stabilize stabilize prediction 

Q179H
0.02 Low Confidence Prediction 0.044 176 !2.780 !33 !0.10 !0.868 !0.19 !0.628 score

affect protein function benign benign deleterious neutral decrease destabilize destabilize destabilize prediction 

P189T
0.03 Low Confidence Prediction 0.519 176 !2.408 !28 !1.36 !1.079 !0.45 !0.852 score

affect protein function damaging benign   neutral neutral decrease destabilize destabilize destabilize prediction 

H91P
0.00 Low Confidence Prediction 0.928 220 !4.509 27 !0.58 0.35 !1.35 0.099 score

affect protein function damaging damaging deleterious effect decrease stabilize destabilize stabilize prediction 

E167D
0.00 Low Confidence Prediction 0.995 220 !2.062 69 !0.32 !0.636 !1.4 !0.493 score

affect protein function damaging damaging neutral effect decrease destabilize destabilize destabilize prediction 

H91N
0.01 Low Confidence Prediction 0.646 220 !3.038 9 !3.02 !0.499 !0.22 !0.472 score

affect protein function damaging damaging deleterious effect decrease destabilize destabilize destabilize prediction 

A104V
0.00 Low Confidence Prediction 0.600 220 !2.720 4 !0.55 !0.739 !1.69 !0.735 score

affect protein function damaging damaging deleterious effect decrease destabilize destabilize destabilize prediction 

R66M
0.00 Low Confidence Prediction 1.000 220 !4.987 73 !0.66 !0.736 !0.62 !0.772 score

affect protein function damaging damaging deleterious effect decrease destabilize destabilize destabilize prediction 

D186G
0.00 Low Confidence Prediction 0.998 220 !4.971 61 !0.44 !0.585 !0.24 !0.307 score

affect protein function damaging damaging deleterious effect decrease destabilize destabilize destabilize prediction 

C191S
0.00 Low Confidence Prediction 1.000 220 !7.880 73 0.26 !0.785 !0.45 !0.467 score

affect protein function damaging damaging deleterious effect decrease destabilize destabilize destabilize prediction 

C191G
0.00 Low Confidence Prediction 1.000 220 !9.232 81 !0.49 !1.581 !1.09 !1.595 score

affect protein function damaging damaging deleterious effect decrease destabilize destabilize destabilize prediction 

   The scores of PANTHER were taken as preservation time. The scores of Mutant2, mCSM, SDM, and DUET were taken as free energy change (DDG)
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web-based bio-information servers. Therefore, SIFT pre-
dictions were compensated by other comparable pre-
diction tools such as PolyPhen-2, PANTHER, PRO-
VEAN, and SNAP2 through analyzing the effect of these
nsSNPs on leptin function. These confirmations came
from the ability of PolyPhen-2, PANTHER, PROVEAN,
and SNAP2 tools to give compatible results regarding
the collective effects of these 28 nsSNPs. Accordingly,
eight nsSNPs, M1L, E2V, P3A, R4L, R5G, G8R, I9N,
and A15G were entirely eliminated from further predic-
tions since most prediction tools did not give reliable
consequences regarding these missense mutations
(Table 3). 

The main reason behind the elimination of M1L,
E2V, P3A, R4L, R5G, G8R, I9N, and A15G nsSNPs from
further analyses may be a consequence of their positions
in the premature leptin structure. In other words, most
of these benign nsSNPs were positioned in the first 24
amino acids which are cleaved-off from the structure of
the premature leptin before it is circulated into blood
(Liefers, 2004). The ranges of the deleterious conse-
quences of the remaining 20 nsSNPs were further cate-
gorized according to the impact of their effect on leptin
biological structure and function. Out of the identified 20
nsSNPs, 9 nsSNPs identified in 6 amino acids positions,
R66M, H91N, H91P, A104V, S162P, D186Y, D186G,
C191S, and C191G were found to represent the most
dangerous missense mutations observed in bovine leptin
(Fig. 1B). These variants were re-predicted as delete-
rious by all the four, PolyPhen-2, PANTHER, PROVEAN,
and SNAP2 programs and are likely to affect the struc-
ture and function of the protein, resulting in different
metabolic problems. In all 9 nsSNPs were predicted as
deleterious by all the software tools used (R66M, H91N,
H91P, A104V, S162P, D186G, D186Y, C191S, and
C191G) (Figure 1C). To evaluate the effect of these
deleterious nsSNPs on protein stability upon mutation,
four in silico  tools were utilized, i.e. I-Mutant 2, mCSM,
SDM, and DUET (Capriotti et al., 2005; Pires et al.,
2012; Worth et al., 2012; Pires et al., 2014). These tools
further eliminated three additional deleterious nsSNPs
as they increased leptin stability upon mutation (H91P,
S162P, and D186Y) (Fig. 1D). Thus, by using the de-
leterious prediction filter and the stability prediction
filter, only 6 nsSNPs were found to be deleterious by all
these tools, namely R66M, H91N, A104V, D186G,
C191S, and C191G. Subsequently, a third layer of pre-

Fig. 1. A schematic diagram of mutation prediction tools sho-
wing the most deleterious nsSNPs of bovine leptin. A) out of
the 29 retrieved nsSNPs, B) only 9 were found to be entirely de-
leterious by all tools (PolyPen-2PANTHER/PROVEAN/ SNAP2),
C) out of the 9 deleterious nsSNPs, D) only 6 were found en-
tirely destabilizing by Mutant2/mCSM/SDM/DUET tools, E) out
of the 6 deleterious nsSNPs, F) only 4 were found entirely
destabilizing by the COBALT/ConSurf/SPIDDER/MutPred
tools, G) the filtered-out entirely deleterious and destabilizing

nsSNPs were only four
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Table 4. MutPred predictions for the most deleterious nsSNPs observed in the bovine LEP gene

Substitution Molecular mechanisms
with P -values # 0.05 Probability P -value

R66M

MutPred score 0.830

loss of allosteric site at R66 0.46 1.9e-04

altered transmembrane protein 0.29 2.1e-04

altered disordered interface 0.28 0.04

altered ordered interface 0.27 0.05

altered DNA binding 0.24 0.01

D186G

MutPred score 0.536

gain of loop 0.27 0.03

altered transmembrane protein 0.23 2.0e-03

C191S

MutPred score 0.721

gain of intrinsic disorder 0.50 1.7e-03

gain of B-factor 0.32 1.2e-03

altered transmembrane protein 0.31 1.2e-04

loss of disulfide linkage at C191 0.10 0.05

C191G

MutPred score 0.721

gain of intrinsic disorder 0.39 0.01

gain of B-factor 0.35 2.2e-04

altered transmembrane protein 0.29 4.0e-04

gain of loop 0.27 0.03

loss of disulfide linkage at C191 0.10 0.05

diction filters was added to get a further confirmation on
the observed variants in terms of evolutionary conserva-
tion grade they had and the mechanism of their effect.
This prediction task was performed by four prediction
tools, NCBI-Cobalt, ConSurf, SPPIDER, and Mutpred.
Using NCBI-Cobalt, all 6 nsSNPs were found to be con-
served in comparison with all other eutherian animals.
The ConSurf tool provided an accurate conservation
analysis in which the majority of nsSNPs (R66M,
D186G, C191S, and C191G) ranged between conserved
and highly conserved with the exception of the 91st

amino acid position that consisted of two different va-
riants. Moreover, results obtained with the SPPIDER
tool concerning R66M, H91N, H91P, D186G, C191S,
and C191G were confirmed by those from ConSurf 
(Supplementary Fig. 1A, 1B, 1C). The most conserved
nsSNPs among the results obtained with (all three)
NCBI-Cobalt, ConSurf, and SPPIDER tools were only
four (R66M, D186G, C191S, and C191G) (Fig. 1E). Ad-

ditionally, more predictions were offered by ConSurf and
SPPIDER to provide further prioritization amongst
these 4 conserved variants. Both ConSurf and SPPIDER
tools gave similar “very high” conservation for R66M,
C191S, and C191G nsSNPs. 

To go beyond this point, the ConSurf tool unmasked
many more details concerning these three nsSNPs.
It revealed that both, the 66th and the 191th amino acids
were positioned in functional places within the corres-
ponding exposed positions in bovine leptin. Further-
more, several mechanisms were suggested by MutPred
for the observed highly deleterious nsSNPs, such as loss
of the allosteric site, altered transmembrane, and dis-
ordered DNA-binding properties in R66M, gain of loop
and altered transmembrane properties in D186G, and
gain of loop and intrinsic disorder, altered transmem-
brane protein, and loss of disulfide linkage in both
C191S and C191G (Table 4).
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Fig. 2. The postulated 3D structure of the most deleterious
missense SNPs in bovine leptin before and after mutation.
A–C) branches highlight the involved amino acids in their wild

types and mutant forms, respectively

Fig. 3. FTsite prediction of the 3D constructed bovine leptin

All of the constructed 191 (100%) amino acid resi-
dues were modeled successfully and only 14 (28%) posi-
tions were predicted as disordered by the RaptorX mo-
deling tool. Secondary structures of the native leptin
model revealed 53% helix, 1% beta sheet, and 45% loop
structures. Although the R66M, C191S, and C191G
variants exerted high critical functionality in all predic-

tion tools, the analysis of the 3D putative model of bo-
vine leptin did not predict any involvement of these
three variants, as long as all other damaging nsSNPs, in
any ligand bound with the leptin receptor was as sug-
gested by FTsite search tool (Fig. 3). Thus, the present
study found that all these proven deleterious variants do
not participate in the binding with the receptor (supple-
mentary Table 1).

Discussion

There were several reasons that prompted us to en-
gage in the study of the influence of SNPs on the LEP
gene sequence and their potential influence on protein
function (Raschia et al., 2018). They were: 1) many
nsSNPs have been reported in the coding region of the
LEP gene that has a relation to growth, nutritional sta-
tus, and body composition (Liao et al., 2010), 2) LEP
gene is located within the quantitative trait locus on
chromosome “4” that is directly or indirectly related to
several productive traits (Agarwal et al., 2009), 3) the
LEP gene is a key factor for getting a deeper insight into
its association with the leptin receptor in cattle (Trako-
vická et al., 2013), 4) the combination of the pattern of
the LEP gene binding with its receptor and its location
on  chromosome 4 makes the LEP gene a brilliant candi-
date gene that may participate interactively in animal
genetic breeding strategies (Jecminkova et al., 2018),
5) the study of nsSNPs of LEP gene might have a remar-
kable consequence on its corresponding protein struc-
ture, expression, and function. Accordingly, the most de-
leterious missense mutations of 191 amino acids of the
leptin protein were comprehensively covered in this
study.

3D analyses of bovine leptin have identified three
functionally important receptor binding sites on the four-
helix leptin structure (Zhang et al., 2005). Leptin recep-
tor binding site-I is located in the C-terminus (Peelman
et al., 2004). It is  a 50-amino-acid long chain, positioned
within 141–191 residues in bovine leptin. The C-termi-
nus exhibits a unique structure which might allow leptin
to specifically bind to its receptor by enhancing the acti-
vity of the N-terminus (Peelman et al., 2014). This is due
to the binding of the C-terminus with the N-terminus
with the Cys141-Cys191 disulfide bond (Denver et al.,
2011). Therefore, any amino acid substitution at this cri-
tical site would cause a misfolding in the N-terminus por-
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tion and might break its interconnection with the C-ter-
minus. Thus, both C191S and C191G nsSNPs would 
prevent the N-terminal portion from maintaining the
correct leptin conformation needed for binding to its
receptor. Thus, C191S and C191G may have deleterious
consequences on leptin activity. The Mutpred tool indi-
cated that both C191S and C191G disrupted the Cys141-
Cys191 disulfide connection and were involved in this
damaging mechanism. With regard to receptor binding
site-II, which is positioned within bovine leptin amino
acid residues 131–165 (Hiroike et al., 2000), no highly
deleterious nsSNP was detected at this site. On the
other hand, three completely deleterious nsSNPs
(R66M, A104V, H91N, and H91P) were detected at the
leptin receptor binding site-III. This binding site is loca-
ted around the N-terminus of leptin (Iserentant et al.,
2005). It extends from residues 47–140 of the mature
bovine leptin (Fischer, 2008).

Thus, the presence of R66M, A104V, H91N, and
H91P snSNPs in mature leptin might cause improper
folding of the N-terminus. Therefore, the present fin-
dings indicate that C191S, C191G, A104V, and R66M
have the most dangerous consequences due to their
highly deleterious impacts predicted by all utilized
in silico tools. As determined by the ConSurf tool in the
present study, these highly damaging amino acids are
located in highly evolutionary, conserved positions in
bovine leptin. Eventually, the obtained perspective of
bovine leptin is the result of a cumulative combination of
various computational tools that have collectively provi-
ded these data.

Conclusions

This manuscript presents pilot data that filter out the
probability of the nsSNPs altering leptin structure and
its biological activity. These SNPs may potentially have
a profound influence on the protein structure and its abi-
lity to interact with receptors. This study detected four
amino acid variants, C191S, C191G, A104V, and R66M
that, according to the prediction tools used in the study,
had the most damaging effects on the protein in terms
of structure, function, and stability. R66M and A104V
exert their effect primarily by causing loss of the allo-
steric site and loop alteration, respectively. Importantly,
both C191S and C191G directly disrupt disulfide linkage
formation in the protein. The last disulfide breakdown is

a natural outcome for the altered protein due to the posi-
tioning of both C191S and C191C in cys141–cys191 in
the disulfide linkage site of leptin. Therefore, these
in silico prediction data may provide the first bio-com-
putational evidence of the consequences of the most
deleterious missense mutations in bovine leptin in terms
of its structure, function, and stability. 

The present study provides a starting point for the
future targeted breeding-based studies that may be use-
ful for establishing the potential damaging impact of
amino acid substitutions on the biological function of lep-
tin in the marker-assisted selection of cattle. These com-
putational findings would/may/might (also) make bree-
ders rethink current breeding systems and may establish
in silico  approaches to them.
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