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Abstract

This study investigated the potential protective role of aqueous leafextracts of Chromolaena odorata and Tridax
procumbens against pulmonary toxicity induced by doxorubicin. To this end, the effects of these extracts on the
profiles of pulmonary biomarkers, lipids and electrolytes were monitored in doxorubicin-treated rats. Doxorubicin
was intraperitoneally administered at 15 mg/kg body weight (48 h prior to sacrifice); metformin was orally
administered daily at 250 mg/kg body weight (for 14 days); and both extracts were orally administered daily at
50, 75 and 100 mg/kg body weight (for 14 days).The concentrations of pulmonary malondialdehyde, cholesterol,
triglyceride, calcium, chloride and sodium of Test control were significantly higher (P < 0.05) than those of the
other groups. However, the concentrations of pulmonary ascorbic acid, reduced glutathione, magnesium and
potassium as well as pulmonary catalase, glutathione peroxidase and superoxide dismutase activities of Test
control were significantly lower (P < 0.05) than those of the other groups.The administration of the extracts
prevented doxorubicin-induced adverse alterations in the profiles of pulmonary biomarkers of oxidative stress,
cholesterol and electrolytes and maintained them within the normal ranges .Therefore, these herbal preparations
from C. odorata and T. procumbens are promising candidates for the prevention/alleviation of doxorubicin-induced
pulmonary toxicity.
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Introduction

Doxorubicin induces toxicityin various organs, inclu-
ding lungs (Meadors et al., 2006; Injac et al., 2009;
Srdjenovic et al., 2010; Vapa et al., 2012; Jagetia and Lal-
rinpuii, 2018).Pulmonary oedema, pneumonitis or lung
fibrosis has been reported as one of the adverse side
effects in cancer patients receiving doxorubicin alone or
in combination with other chemotherapeutic drugs (Maz-
zotta et al., 2016; Irfan et al., 2017; Jagetia and Lalrin-
puii, 2018). Oxidative stress is one of the mediators of
pulmonary toxicity of doxorubicin (Öz and İlhan, 2006;
Srdjenovic et al., 2010; Vapa et al., 2012). Oxidative
stress caused by doxorubicin is characterised by signifi-
cantly increased lipid peroxidation (high malondialde-

hyde), lowered reduced glutathione levels (Öz and İlhan,
2006; Injac et al., 2009; Srdjenovic et al., 2010; Vapa
et al., 2012; Jagetia and Lalrinpuii, 2018), and lowered
activities of antioxidant enzymes (such as catalase,
superoxide dismutase, glutathione peroxidase, gluta-
thione reductase and glutathione transferase (Srdjenovic
et al., 2010; Vapa et al., 2012; Jagetia and Lalrinpuii,
2018) and lactate dehydrogenase (Injac et al., 2009)).

Therefore, if pulmonary toxicity caused by doxorubi-
cinis due to free radical formation and lipid peroxidation,
then antioxidant therapy may protect against doxorubi-
cin-induced toxicity in lungs (Kinnula et al., 2005; Vapa
et al., 2012). Exogenous treatment with antioxidants has
been shown to protect the lungs in vivo against doxo-
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rubicin-induced increased oxidant burden (Kinnula et al.,
2005; Vapa et al., 2012). Thus, the use of antioxidants as
protective agents could be a potential solution for doxo-
rubicin-induced pulmonary toxicity. 

Metformin, a drug widely used in the treatment of
type 2 diabetes, exerts its effect through the activation
of adenosine monophosphate-activated protein kinase
(Park et al., 2012; Dean et al., 2016; Ismail Hassan et al.,
2020). This drug has been reported to attenuate pulmo-
nary injury by inhibiting the production of reactive oxy-
gen species; by reducing inflammation, coagulation and
fibrosis (Park et al., 2012; Garnett et al., 2013; Chen
et al., 2015; Saisho, 2015; Forno, 2016; Chen et al.,
2017; Yu et al., 2018; Ismail Hassan et al., 2020); and by
maintaining mitochondrial membrane potential (Ismail
Hassan et al., 2020). Metformin also reverses pulmonary
hypertension through the inhibition of aromatase and
oestrogen synthesis (Dean et al., 2016).

Studies have shown that allicin, chlorogenic acid and
quercetin have pulmoprotective activities against cyclo-
phosphamide- or lipopolysaccharide-induced toxicity
(Zhang et al., 2010; Ashry et al., 2013; Şengül et al.,
2017). The leaves of Chromolaena odorata and Tridax
procumbens are rich in the above mentioned com-
pounds, in addition to vitamin C; these leaves also con-
tain an array of bioactive compounds belonging to the
following families: allicins, benzoic acid derivatives, caro-
tenoids, flavonoids, glycosides, hydroxycinnamic acid
derivatives, lignans, phytosterols, saponins, tannins and
terpenes (Phan et al., 2001; Ling et al., 2007; Igboh
et al., 2009; Ikewuchi and Ikewuchi, 2009a; Ikewuchi
et al., 2009, 2012, 2013, 2014a,b, 2015; Ikewuchi,
2012a,b; Onkaramurthy et al., 2013; Putri and Fatma-
wati, 2019; Cui et al., 2020). These antioxidant and anti-
dyslipidemic (cholesterol and triglyceride lowering)
agents (Dillard and German, 2000; Lawson, 2001; Fran-
cis et al., 2002; Prasad, 2005; Soetan, 2008; Zanwar
et al., 2011; Ikewuchi et al., 2013, 2015, 2019; Ifeanacho
et al., 2017) may account for the myriad pharmacological
properties exhibited by these leaves and their extracts.
Ikewuchi et al. reported the antidyslipidemic, antihyper-
tensive, weight reducing, nephroprotective, cardiopro-
tective, hepatoprotective and haematoprotective activi-
ties of leafextracts of C. odorata and T. procumbens
(Ikewuchi and Ikewuchi, 2009b, 2011a, 2013; Ikewuchi
et al., 2011a,b, 2012, 2014a,b, 2021a,b,c; Ifeanacho
et al., 2020, 2021). The anticancer (Vishnu and Srini-

vasa, 2015; Adedapo et al., 2016), antioxidant (Putri and
Fatmawati, 2019; Cui et al., 2020) of these extracts have
also been reported in the present study, the effect of
aqueous leafextracts of C. odorata and T. procumbens
on doxorubicin-induced pulmonary toxicity was investi-
gated in Wistar rats.

Materials and methods

Procurement of materials

Fresh samples of C. odorata and T. procumbens were
collected from within the University of Port Harcourt’s
“Abuja park” campus and were identified as reported
earlier (Ikewuchi and Ikewuchi, 2009b, 2011a, 2013;
Ikewuchi, 2012a,b; Ikewuchi et al., 2009, 2011a,b, 2012,
2013, 2014a,b, 2015). Forty-five Wistar rats (weight
120–190 g) were obtained from and housed in cages at
the Animal House of Department of Pharmacology, Uni-
versity of Port Harcourt, Nigeria. They were allowed
uncontrolled access to water and feed (Port Harcourt
Flour Mills, Port Harcourt, Nigeria). All chemicals used
were of analytical grade and obtained from Sigma-Aldrich
(St Louis, MO, USA). The cholesterol, triglyceride and
calcium kits were obtained from Randox Laboratories
Ltd, County Antrim, UK; the sodium and potassium kits
were purchased from Atlas Medical, Cowley Rd, Cam-
bridge, UK; and the chloride and magnesium kits were
products of Agappe Diagnostics Switzerland GmbH.

Preparation of extracts

The leaves were cleaned to remove dirt. Next, 6 kg
of C. odorata and 5.5 kg of T. procumbensleaves were
macerated in distilled water and filtered through a sieve
cloth. The resultant filtrates were dried in a water bath,
and their residues (127 g and 116 g, respectively) were
stored in the refrigerator for use in the assays. The re-
sultant residues or leafextracts of C. odorata and T. pro-
cumbens (hereafter referred to as COLE and TPLE,
respectively) were weighed, reconstituted in distilled
water and administered to the experimental animals
according to their individual weights and doses of their
groups, such that the maximum volume of the reconsti-
tuted extracts received by each rat was 0.5 ml.

Experimental design and sample collection

All experimental procedures in this study were per-
formed in accordance with the ethical guidelines for
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investigations using laboratory animals and complied
with the guide for the care and use of laboratory animals
(National Research Council, 2011). The animals were
weighed and arranged into nine groups of five animals
each, with average differences in weight < 2.951 g (FAO,
1991). The treatment commenced after 1 week of ac-
climatisation and lasted for 14 days. DiabetminTM (met-
formin HCl) (dissolved in distilled water) was orally ad-
ministered daily at 250 mg/kg body weight to the Met-
formin group. The extracts were administered through
the same route at 50 mg/kg to COLE-50 mg (COLE) and
TPLE-50 mg (TPLE); 75 mg/kg to COLE-75 mg (COLE)
and TPLE-75 mg (TPLE); and 100 mg/kg to COLE-
100 mg (COLE) and TPLE-100 mg (TPLE). The Normal
and Test control received distilled water instead of
extract.

On day 12, doxorubicin was dissolved in normal sa-
line and intraperitoneally injected (15 mg/kg body
weight) into rats of all the groups, except the Normal
control which was given normal saline instead of doxo-
rubicin solution. The doxorubicin dose was adopted from
Song et al. (2019). The doses of administration of the
C. odorata  extract was adopted and modified from Ike-
wuchi et al. (2014a,b); that of T. procumbens extract was
adopted and modified from Ikewuchi et al. (2011a,b);
and that of metformin was adopted from Zilinyi et al.
(2018).

On day 14, the animals were sacrificed under chloro-
form anaesthesia; their lungs were collected, and their
weights and sizes were recorded (Ikewuchi et al., 2014b).
The collected organs were homogenised in distilled wa-
ter (at 0.4 g per 5 ml), and the resultant homogenates
were stored in the refrigerator and used for the assays.
The weights/sizes indices of the lungs were determined
according to the following formula (Ifeanacho et al.,
2019).

Assay of pulmonary markers of oxidative stress, lipids
and electrolyte concentrations

The malondialdehyde (MDA) contents of homogena-
tes were determined according to the method of Gutte-
ridge and Wilkins (1982). The ascorbic acid contents
were determined by iodine titration (Ikewuchi and Ike-
wuchi, 2011b; Ikewuchi et al., 2021),and the reduced
glutathione concentrations were determined according
to the method of Sedlak and Lindsay (1968). The me-
thod of Beers and Sizer (1952) was adopted for the assay

of catalase activities, while that of Misra and Fridovich
(1989) was adopted for the assay of superoxide dis-
mutase activities. The glutathione peroxidase activities
were assayed according to the method reported by Ro-
truck et al. (1973). The Lowry method (Lowry et al.,
1951) was used to estimate the protein concentrations
of the homogenates. The cholesterol, triglyceride, cal-
cium, sodium, potassium, chloride and magnesium con-
tents of the homogenates were assayed according to the
kit manufacturers’ instructions, except that homogena-
tes were used instead of plasma.

Determination of the percent of protection 
by the extracts

The percent of protection of the lungs by the extracts
with respect to the various biochemical parameters de-
termined was calculated as follows (Ikewuchi et al.,
2017).

Statistical analysis

Statistical calculations were performed with Excel
2010 (Data Analysis Add-in) software. All data are ex-
pressed as mean ± standard error of the mean (SEM)
with n = 5 animals per group, and the data were analysed
by one-way analysis of variance. Significant difference of
means was determined using the least significant dif-
ference test. A P value of < 0.05 was considered to be
statistically significant.

Results

Effect of the extracts on pulmonary biomarkers 
of oxidative stress

The pulmonary malondialdehyde concentration
(μmol/mg protein) of Test control (2.220 ± 0.078) was
significantly higher (P < 0.05) than those of the other
groups (Table 1), including the Normal control group
(1.752 ± 0.072), and the COLE-100 mg group had the
least value of 1.311±0.053. The ascorbic acid (17.411±
±0.446 μg/mg protein) and reduced glutathione (0.171 ±
± 0.003 μmol/mg protein) concentrations of the lungs of
Test control were significantly lower (P < 0.05) than
those of the other groups. The Normal control group
had the highest ascorbic acid content (44.505 ±
± 1.417 μg/mg protein), while the COLE-50 mg group
had the highest reduced glutathione content (0.425 ±
±0.011 μmol/mg protein). The pulmonary catalase
(2.434± 0.070 μmol/min/mg protein), glutathione per-



Table 1. Effects of aqueous leafextracts of Chromolaena odorata and Tridax procumbens on pulmonary biomarkers of oxidative stress in doxorubicin-treated rats

Treatments Malondialdehyde
[μmol/mg protein]

Ascorbic acid
[μg/mg protein]

Reduced glutathione
[μmol/mg protein]

Glutathione peroxidase
[μmol/min/mg protein]

Superoxide dismutase
[U/mg protein]

Catalase
[μmol/min/mg protein]

Normal control 1.752 ± 0.072 a,d 44.505 ± 1.417 a 0.247 ± 0.005 a 0.758 ± 0.014 a 0.888 ± 0.004 a 3.439 ± 0.007 a

Test control 2.220 ± 0.078 c 17.411 ± 0.446 c 0.171 ± 0.003 c 0.492 ± 0.015 c 0.641 ± 0.007 c 2.434 ± 0.070 b

Metformin 1.360 ± 0.088 b 20.612 ± 0.226 d 0.410 ± 0.013 d 0.823 ± 0.012 d 1.133 ± 0.011 d 4.053 ± 0.018 c

COLE-50 mg 1.727 ± 0.083 d 21.928 ± 0.547 b,d 0.425 ± 0.011 d 0.647 ± 0.019 e 1.030 ± 0.014 e 4.458 ± 0.032 d

COLE-75 mg 1.433 ± 0.065 b 33.956 ± 0.856 e 0.279 ± 0.013 e 0.785 ± 0.015 a 0.984 ± 0.013 f 4.290 ± 0.024 e

COLE-100 mg 1.311 ± 0.053 a,b 22.801 ± 0.940 b 0.209 ± 0.005 f 0.913 ± 0.016 f 0.767 ± 0.012 b 3.196 ± 0.043 f

TPLE-50 mg 1.696 ± 0.129 d 21.672 ± 0.541 b,d 0.248 ± 0.008 a 0.681 ± 0.015 e 1.150 ± 0.009 d 4.108 ± 0.031 c

TPLE-75 mg 1.541 ± 0.139 a,b,d 26.002 ± 0.337 f 0.336 ± 0.010 b 0.793 ± 0.008 a 1.127 ± 0.010 d 3.656 ± 0.028 g

TPLE-100 mg 1.566 ± 0.069 a,b,d 22.175 ± 0.219 b,d 0.264 ± 0.013 a,e 0.994 ± 0.018 b 0.885 ± 0.003 a 3.286 ± 0.024 h

Values are expressed as mean ± SEM, n = 5; values in the same column with different superscript letters differ significantly at P < 0.05

Table 2. Effects of aqueous leafextracts of Chromolaena odorata and Tridax procumbens on the profiles of pulmonary electrolytes and lipids,
and protein concentrations of doxorubicin-treated rats

Treatments Calcium
[μg/mg protein]

Chloride
[μEq/mg protein]

Magnesium
[μg/mg protein]

Potassium
[μmol/mg protein]

Sodium
[μEq/mg protein]

Cholesterol
[mmol/mg protein]

Triglyceride
[mmol/mg protein]

Protein
[mg/g tissue]

Normal control 26.426 ± 2.095 a 6.957 ± 0.136 a 16.002 ± 0.114 a 1.178 ± 0.079 a,c 18.029 ± 0.848 a,c 0.539 ± 0.111 a,c 0.582 ± 0.134 a,d 43.337 ± 3.347 a

Test control 38.222 ± 2.584 c 13.466 ± 0.197 c 3.333 ± 0.239 c 0.600 ± 0.023 b 27.475 ± 0.733 b 0.701 ± 0.127 c 1.241 ± 0.041 b 39.732 ± 5.864 a

Metformin 20.571 ± 0.600 b 11.974 ± 0.086 d 6.234 ± 0.508 d 1.082 ± 0.023 a,d 19.548 ± 0.406 a 0.407 ± 0.069 a,b 0.856 ± 0.045 c 46.643 ± 8.021 a,b

COLE-50 mg 19.654 ± 1.226 b 6.482 ± 0.179 e 15.797 ± 0.491 a 1.043 ± 0.030 a 19.236 ± 0.424 a,d 0.317 ± 0.049 b 0.738 ± 0.062 c,d 51.042 ± 3.658 a,b

COLE-75 mg 20.508 ± 0.809 b 3.478 ± 0.057 f 13.211 ± 0.722 e 1.103 ± 0.037 a,d 18.903 ± 0.891 a,c 0.243 ± 0.038 b 0.509 ± 0.054 a 51.754 ± 4.591 a,b

COLE-100 mg 20.758 ± 0.582 b 3.716 ± 0.080 f 16.810 ± 0.269 a,f 1.044 ± 0.096 a 17.092 ± 0.653 c 0.410 ± 0.051 a,b,d 0.546 ± 0.059 a,d 52.045 ± 2.980 a,b

TPLE-50 mg 20.836 ± 0.592 b 4.522 ± 0.140 b 17.899 ± 0.930 b,f 1.349 ± 0.101 c 18.159 ± 0.477 a,c 0.307 ± 0.043 b 0.433 ± 0.070 a 49.628 ± 1.569 a,b

TPLE-75 mg 21.904 ± 0.410 b 6.126 ± 0.130 e 19.729 ± 1.077 b 1.245 ± 0.119 a,c 17.445 ± 0.612 c,d 0.560 ± 0.048 c,d 0.757 ± 0.089 c,d 40.926 ± 2.906 a

TPLE-100 mg 21.460 ± 0.759 b 5.292 ± 0.237 g 13.147 ± 0.739 e 1.281 ± 0.087 c,d 19.884 ± 0.779 a 0.343 ± 0.052 a,b 0.551 ± 0.085 a,d 57.060 ± 5.289 b

Values are expressed as mean ± SEM, n = 5; values in the same column with different superscript letters differ significantly at P < 0.05



Table 3. Percent protection of the parameters following treatment with the extracts

Parameters Metformin COLE-50 mg COLE-75 mg COLE-100 mg TPLE-50 mg TPLE-75 mg TPLE-100 mg

Cholesterol 181.7 ± 42.7 a 236.8 ± 30.3 a,c 282.6 ± 23.7 c 179.9 ± 31.7 a 243.2 ± 26.6 a,c 87.0 ± 29.5 b 221.2 ± 32.3 a,c

Triglyceride 59.1 ± 6.7 a 76.7 ± 9.3 a,c 111.0 ± 8.1 b 105.4 ± 8.8 b,c,d 122.3 ± 10.4 b 73.8 ± 13.3 a,d 104.7 ± 12.7 b,c

Calcium 149.6 ± 5.1 a,b 157.4 ± 10.4 a 150.2 ± 6.9 a,b 148.1 ± 4.9 a,b 147.4 ± 5.0 a,b 138.3 ± 3.5 b 142.1 ± 6.4 a,b

Potassium 83.5 ± 3.9 a,c 76.7 ± 5.2 a 87.1 ± 6.4 a,c 76.9 ± 16.6 a 129.6 ± 17.5 b 111.6 ± 20.6 a,b 117.9 ± 15.1 b,c

Magnesium 22.9 ± 4.0 a 98.4 ± 3.9 c 78.0 ± 5.7 d 106.4 ± 2.1 e 115.0 ± 7.3 b,e 129.4 ± 8.5 b,c 77.5 ± 5.8 d

Chloride 22.9 ± 1.3 a 107.3 ± 2.8 c 153.4 ± 0.9 d 149.8 ± 1.2 d 137.4 ± 2.2 e 112.8 ± 2.0 c 125.6 ± 3.6 b

Sodium 85.9 ± 4.9 a 89.7 ± 5.1 a,c 93.7 ± 10.8 a,b 115.6 ± 7.9 b 102.7 ± 5.8 a,b 111.3 ± 7.4 b,c 81.8 ± 9.4 a

Ascorbic acid 11.8 ± 0.8 a 16.7 ± 2.0 a,b 61.1 ± 3.2 c 19.9 ± 3.5 b 15.7 ± 2.0 a,b 31.7 ± 1.2 d 17.6 ± 0.8 a,b

Malondialdehyde 184.0 ± 18.8 a 105.5 ± 17.8 b 168.3 ± 14.0 a,c 194.5 ± 11.3 a 112.1 ± 27.7 b,c 145.3 ± 29.8 a,b 139.9 ± 14.7 a,b

Catalase 161.0 ± 1.8 a 201.3 ± 3.2 b 194.6 ± 2.4 c 75.8 ± 4.3 d 166.5 ± 3.1 a 121.6 ± 2.8 e 84.7 ± 2.4 f

Superoxide dismutase 199.0 ± 4.6 a 157.1 ± 5.8 c 138.5 ± 5.1 d 51.1 ± 4.9 e 205.6 ± 3.8 a 196.5 ± 4.2 a 98.7 ± 1.4 b

Glutathione peroxidase 124.5 ± 4.5 a 58.3 ± 7.2 c 110.3 ± 5.6 a 158.4 ± 6.1 d 71.2 ± 5.5 c 113.2 ± 2.9 a 188.7 ± 6.6 b

Reduced glutathione 315.0 ± 16.4 a 334.7 ± 14.7 a 143.2 ± 17.0 c 51.3 ± 6.2 d 101.9 ± 9.7 b 217.1 ± 13.5 e 123.4 ± 17.6 b,c

   Values are expressed as mean ± SEM, n = 5; values in the same row with different superscript letters differ significantly at P < 0.05
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Table 4. Effects of aqueous leafextracts of Chromolaena odorata and Tridax procumbens
on the weight and size indices of the lungs of doxorubicin-treated rats

Treatments
Lung weight index Lung size index

weight [g] index [%] size [cm3] index [%]

Normal control 1.453 ± 0.172 a 0.861 ± 0.086 a 2.040 ± 0.248 a 1.214 ± 0.138 a

Test control 1.376 ± 0.194 a 0.910 ± 0.117 a 1.900 ± 0.187 a 1.270 ± 0.138 a

Metformin 1.500 ± 0.311 a 0.899 ± 0.172 a 1.750 ± 0.250 a 1.069 ± 0.168 a

COLE-50 mg 1.177 ± 0.125 a 0.835 ± 0.122 a 1.992 ± 0.354 a 1.408 ± 0.266 a

COLE-75 mg 1.329 ± 0.151 a 0.869 ± 0.087 a 1.700 ± 0.200 a 1.130 ± 0.157 a

COLE-100 mg 1.579 ± 0.121 a 0.994 ± 0.084 a 2.020 ± 0.453 a 1.268 ± 0.290 a

TPLE-50 mg 1.201 ± 0.093 a 0.760 ± 0.063 a 1.800 ± 0.200 a 1.132 ± 0.111 a

TPLE-75 mg 1.376 ± 0.057 a 0.925 ± 0.066 a 2.300 ± 0.255 a 1.536 ± 0.176 a

TPLE-100 mg 1.281 ± 0.180 a 0.881 ± 0.125 a 2.000 ± 0.354 a 1.386 ± 0.250 a

    Values are expressed as mean ± standard error in the mean, n = 5 animals per group; values in the same
     column with different superscript letters differ significantly at P < 0.05

oxidase (0.492 ± 0.015 μmol/min/mg protein) and super-
oxide dismutase (0.641 ± 0.007 Units/mg protein) acti-
vities of Test control were significantly lower (P < 0.05)
than those of the other groups. The COLE-50 mg group
had the highest catalase activity (4.458 ± 0.032 μmol/
min/mg protein); the TPLE-100 mg group had the
highest glutathione peroxidase activity (0.994 ±
± 0.018 μmol/min/mg protein); and the TPLE-50 mg
group had the highest superoxide dismutase activity
(1.150 ± 0.009 Units/mg protein).

Effect of the extracts on the profiles of pulmonary lipids 
and electrolytes

The pulmonary triglyceride concentration (mmol/mg
protein) of Test control (1.241 ± 0.041) was significantly
higher (P < 0.05) than those of the othergroups (Tab-
le 2); the pulmonary triglyceride concentration of the
Normal control was 0.582 ± 0.134, while that of the
TPLE-50 mg group was 0.433 ± 0.070. The cholesterol
concentration (mmol/mg protein) of Test control
(0.701 ± 0.127) was significantly higher (P < 0.05) than
those of the Metformin, COLE-50 mg, COLE-75 mg,
COLE-100 mg, TPLE-50 mg and TPLE-100 mg groups,
but was not significantly different from that of the other
groups (Table 2); the COLE-75 mg group showed the
least value of 0.243 ± 0.038. The pulmonary calcium
(38.222 ± 2.584 μg/mg protein), chloride (13.466 ±
± 0.197 μEq/mg protein) and sodium (27.475 ±
± 0.733 μEq/mg protein) levels of Test control were

significantly higher (P < 0.05) than those of the other
groups, while the pulmonary magnesium (3.333 ±
± 0.239 μg/mg protein) and potassium (0.600 ± 0.023
μmol/mg protein) levels of Test control were sig-
nificantly lower (P < 0.05) (Table 2). The COLE-50 mg
group had the lowest calcium content (19.654 ±
± 1.226 μg/mg protein), the COLE-75 mg group had the
lowest chloride content (3.478 ± 0.057 μEq/mg protein),
and the COLE-100 mg group had the lowest sodium
content (17.092 ± 0.653 μEq/mg protein), The TPLE-
75 mg group had the highest magnesium content
(19.729 ± 1.077 μg/mg protein), while the TPLE-50 mg
group had the highest potassium content (1.349 ±
± 0.101 μmol/mg protein). The pulmonary protein level
of Test control (39.732 ± 5.864 mg/g tissue) was not
significantly different from those of the other groups,
except that of the TPLE-100 mg group (57.060 ±
± 5.289 mg/g tissue).

Protection of pulmonary biomarkers by the extracts 
and their effect on the weight index of the lungs

The administration of the extracts prevented doxo-
rubicin-induced adverse alterations in the profiles of
pulmonary biomarkers of oxidative stress, cholesterol
and electrolytes and allowed them to be maintained at
near-normal levels. These protection effects of the ex-
tracts are presented in Table 3 as the percent protection
of the parameters. The highest protection of 282.6 ±
± 23.7% was recorded in the cholesterol content of the
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COLE-75 mg group, while the least protection of
11.8 ± 0.8% was recorded in the ascorbic acid content of
the Metformin group. The protective ability of the ex-
tracts compared favourably with that of the Metformin
group. The weight, weight index, size, and size index of
the lungs of Test control were not significantly different
from those of the other groups (Table 4). 

Discussion

Studies have shown thatoxidative stress is one of the
major contributors to pulmonary toxicity induced by
doxorubicin (Öz and İlhan, 2006; Srdjenovic et al., 2010;
Vapa et al., 2012). In the present study, treatment with
doxorubicin caused marked elevations in pulmonary
MDA levels;reduction in ascorbic acid and reduced
glutathione concentrations and reduction incatalase,
glutathione peroxidase and superoxide dismutase acti-
vities (Table 1). This finding is in agreement with other
studies (Öz and İlhan, 2006; Srdjenovic et al., 2010;
Vapa et al., 2012; Jagetia and Lalrinpuii, 2018), which
also reported that treatment with doxorubicin caused
elevated MDA and lowered reduced glutathione con-
centrations as well as lowered pulmonary activities of
catalase, glutathione peroxidase and superoxide dis-
mutase. The high content of ascorbic acid in the leaves
(Ikewuchi and Ikewuchi, 2009a) may have produced the
high pulmonary ascorbic acid content. This antioxidant
protective effect agrees with the report of Ikewuchi
(2012a), wherein ocular antioxidant levels were found to
be improved by T. procumbens extract in alloxan-in-
duced diabetic rats, and with the report of Onkara-
murthy et al. (2013), wherein the antioxidant levels of
diaphragms were improved by C. odorata extract in
streptozotocin-induced diabetic rats. Thus, this increa-
sed antioxidant level caused by the extracts signifies a
boosting of endogenous antioxidant status of pulmonary
tissues and consequent protection of these tissues from
damage caused by free radicals (Ikewuchi, 2012a).

In the present study, doxorubicin caused a significant
increase in the levels of pulmonary cholesterol and
triglycerides (Table 2). This is in line with other reports
of doxorubicin-induced increase in cardiac cholesterol
and triglycerides (Subashini et al., 2007; Sharma et al.,
2016). Nevertheless, pre-treatment with the extracts
prevented this build-up of cholesterol and triglyceride.
The reduction in cholesterol and triglyceride may be due

to the effect of any one or a combination of two or more
of ellagic acid, quercetin, chlorogenic acid and narin-
genin (Ikewuchi, 2012b; Ikewuchi et al., 2012, 2013,
2015; Pitakpawasutthi et al., 2016), which are known to
cause marked decrease in intracellular/hepatic build-up
of triglyceride and cholesterol (Wan et al., 2013; Snyder
et al., 2016; Leng et al., 2018), and lowered adipo-
genesis (Cho et al., 2011; Alam et al., 2014; Okla et al.,
2015). The importance of the lowered cholesterol con-
tent produced by the extracts cannot be overstated,
given the role of cholesterol in membrane fluidity and
function. Studies have shown that the higher the chole-
sterol content in a membrane, the lower is its fluidity,
and vice versa (Le Grimellec et al., 1992; Bastiaanse
et al., 1997). Thus, by virtue of its specific sterol-protein
interactionsand the modification of the lateral dis-
tribution of components and internal properties of the
lipid bilayer of the cell membrane (Yeagle, 2012), cho-
lesterol plays a vital role in the control of the structure
and dynamics of the lipid bilayer (especially with regard
to fluidity), and therefore, it can moderate the activities
of various membrane transporters such as Ca2+ channels,
Ca2+-ATPase, Mg2+-ATPase and Na+, K+-ATPase (Balut
et al., 2006; Grebowski et al., 2013; Krokosz and Gre-
bowski, 2016; Garcia et al., 2019).

Reactive oxygen species initiate free radical-mediated
chain reactions, resulting in the conversion of mem-
brane unsaturated fatty acids into lipid peroxides, which
disrupts integrity of the cell membrane and causes com-
promise of membrane ion transporters, consequently
leading to compromised ion transport (Zaidi and Mi-
chaelis, 1999; Kumar et al., 2002; Torlińska and Grocho-
walska, 2004; Conrard and Tyteca, 2019). Therefore, the
elevated pulmonary chloride, calcium and sodium levels
and lowered magnesium and potassium concentrations
observed in the Test control rats are reflective of the
damaged membranes of the pulmonary tissues resulting
from doxorubicin toxicity. Reactive oxygen species may
affect intracellular calcium signalling by directly inducing
extracellular Ca2+ inflow or activating inositol triphos-
phate, leading to Ca2+ release from the sarcoplasmic re-
ticulum and a subsequent extracellular Ca2+ inflow (Cai
and Hu, 2014; Penniston et al., 2014). However, in the
present study, the extracts countered doxorubicin-in-
duced adverse alterations in pulmonary electrolyte ba-
lance. This ability of the extracts to modulate the profile
of pulmonary electrolytes may be due to the presence of
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chlorogenic acid, a compound reported to improve mi-
neral pool distribution in plasma, liver and spleen (Ro-
driguez de Sotillo and Hadley, 2002). This effect by the
extracts may have been a sequel to their reduction of
pulmonary oxidative stress and/or modulation of
ATPases. This modulation of electrolyte balance is note-
worthy because in airway smooth muscle cells, an in-
crease in intracellular Ca2+concentration acts as a major
contributing factor of force generation, cell proliferation,
contraction, migration, cytokine production and other
cellular responses (Ito, 2014; Xiao et al., 2014). Like-
wise, alterations in intracellular Mg2+concentration can
control the activity of Mg2+-dependent enzymes, energy
production, nucleic acid and protein synthesis, nerve
transmission and stabilisation of lipid membranes and
nucleic acids (Sanui and Rubin, 1982; Payandeh et al.,
2013; Gröber et al., 2015).

The positive modulation of pulmonary electrolyte
profiles by the extracts may also have been a sequel to
their reduction of pulmonary cholesterol and/or modula-
tion of ATPases. Reduction in membrane cholesterol has
been reported to stimulate the activities of Ca2+-ATPase,
Mg2+-ATPase and Na+, K+-ATPase (Kutryk and Pierce,
1988; Bastiaanse et al., 1997), which controls the pas-
sage of calcium, magnesium, potassium and sodium ions
through plasma membranes (Doneen, 1993; Vasic et al.,
2009; Strehler, 2013; Penniston et al., 2014;Clausen
et al., 2017; Obradovic et al., 2018) and thus moderates
intracellular electrolyte balance. Several studies have
also reported that the decrease in the cholesterol con-
tent of plasma membranes leads to decreased Ca2+ inflow
through the Ca2+ channel in plasma membranes, with the
resultant decrease in intracellular Ca2+ and vice versa
(Gleason et al., 1991; Bastiaanse et al., 1997).

On the basis of the above findings, it could be con-
cluded that the extracts acted by modifying the micro-
viscosity of the pulmonary membrane by lowering
cholesterol levels and reducing doxorubicin-induced oxi-
dative stress (lipid peroxidation) and protein sulfhydryl
modification; the resultant increased fluidity and en-
hanced ion transport led to improved electrolyte balance
(especially, by attenuating doxorubicin-induced calcium
overload). This may be the mechanism of pulmoprotec-
tive activities of the extracts. These findings thus in-
dicate the potential of these extracts as a resource for
the management/prevention of doxorubicin-induced pul-
monary toxicity.
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