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Abstract

Modeling the dynamic behavior of signal transduction pathways is an important topic in systems biology. Mathe-
matical models complement experimental technologies used to identify the molecular components and inter-
actions in a system of interest. In this paper, we illustrate different types of mathematical approaches that are
used to model signaling network behavior. Here, we review the basic methods of sensitivity analysis and apply
them to the model of the system of membrane receptors. Four such receptors are considered: growth factor epi-
dermal, low density lipoprotein, transferrin and vitellogenin receptor. We argue that application of sensitivity ana-
lysis methods provides an insight into how a signaling system controls the cell behavior.
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1. Introduction

Mathematical modeling of complex biological systems
can be carried out in a deterministic, stochastic or hybrid
manner. The first one uses the classical differential equa-
tion theory, while the second one is based on the stocha-
stic processes or stochastic differential equation theory.
Both types of models are usually based on some simpli-
fying assumptions that the temperature of a chemical en-
vironment is constant and, in a non-spatial setting, that the
diffusion process occurs immediately, which ensures an
even distribution of a substance over a limited volume.

Description of kinetics in most models stem from
the classical chemical law of mass action. Deterministic
models describe changes in mean concentrations of re-
agents over time, and they do not include the effect of
fluctuations which occur in reality. This means that for
given initial conditions, a deterministic model will always
provide the same results.

Stochastic models describe the evolution of the pro-
bability distribution of all possible system states with re-
spect to the time. These models are often expressed in
the form of the Chemical Master Equation (CME), which
is an alternative form of the Chapman-Kolmogorov equa-
tion. It describes the evolution of a distribution of a con-
tinuous-time Markov process over a set of all possible,

discrete states (Kampen, 2007). A formal analysis of
the CME is complex because of the large state space
which covers all possible arrangements of molecules in
the system, available through given reactions channels.
Consequently, approximation methods were introduced,
such as the Langevin equation (Gillespie, 2000) or
the Fokker-Planck equation (cf. Sjöberg et al., 2009).

Many computational methods are available for both
types of the mathematical model of reacting species.
The basic method is numerical simulation, either of dif-
ferential equations or the Markov process (so called sto-
chastic simulations). These allow to approximate the re-
acting species evolution in time, thus, constituting a ba-
sis for further analysis of the model, such as the sensi-
tivity analysis with respect to its parameters.

1.1. Sensitivity analysis

Sensitivity analysis (SA) investigates the relations
between uncertain parameters of a model, and a pro-
perty of the observable outcome (Saltelli et al., 2008),
which represents some phenotypic features of the mo-
deled system. SA has been used for various parameteri-
zation tasks of models of biological systems, such as fin-
ding essential parameters for research prioritization
(Yue et al., 2008), identifying insignificant parameters
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for model reduction (Shankaran et al., 2006) or para-
meters clustering (Mahdavi et al., 2007).

Classically, sensitivity of the model is determined by
the partial derivatives of the outcome with respect to its
parameters. SA methods based on such quantities are
called local as the derivative is taken at a fixed point in
the state space of model parameters – at the parameter
face value. Moreover, these methods belong to the class
of one-factor-at-a-time (OAT) methods, because the net
effect of a parameter on the property of the outcome is
taken while assuming that all other factors are fixed.
However, most of the biochemical reactions networks
yield models of a nonlinear nature and “for these models,
OAT methods can be of limited use if not outright mis-
leading when the analysis aims to assess the relative im-
portance of uncertain factors, and the model-free mea-
sures are needed, possibly independent of assumptions
about the model structure (...)” (Saltelli et al., 2005). One
solution is the investigation of the influence of simulta-
neous changes in parameters values by assessing higher
order partial derivatives (Mahdavi et al., 2007), where
the order depends on the nonlinearity level of the model.
Nevertheless, it is still a local method, highly dependent
on the given values of parameters. On the contrary, the
so-called global sensitivity analysis (GSA) simultaneously
examines a whole range of all input parameters values.
Exemplary implementations of the GSA indices are the
model-free, global sensitivity measures such as the va-
riance decomposition (Saltelli et al., 2008), or the para-
meters space mapping method of Monte Carlo filtering
(MCF) such as the multi-parameter sensitivity analysis
(MPSA; Hornberger and Spear, 1981). In between, there
are screening techniques which approximate the GSA
indices. Screening techniques, such as the weighted
average of local sensitivities (Bentele et al., 2004) or the
elementary effects of Morris (1991), are global in the
sense that they scan a whole range of parameters values,
but they do that by using local OAT methods of sensi-
tivity analysis for each analyzed set of parameter values.
For a sake of clarity, if not explicitly stated otherwise,
we will use a term local method meaning the local and
OAT method, as well as a term global method meaning
GSA method (Global and simulataneous).

Finally, there are SA methods tailored specifically to
the stochastic models based on CME (Gunawan et al.,
2005). These methods recognize that the response is in
form of distribution rather than a single value correspon-

ding, for instance, to the mean value. Consequently, for sy-
stems where a parameter disruption does not significantly
influence the mean but significantly influences the distribu-
tion itself, the model-free SA indices can incorrectly indi-
cate a lack of sensitivity of the model (cf. Degasperi and
Gilmore, 2008).

1.2. Organization of the paper

In this paper, we briefly review the methods of ma-
thematical modeling and SA applicable to models of sig-
naling pathways. As an illustrative example, we compa-
red both the deterministic and the stochastic model of
a ligand-receptor binding and receptor internalization
(Shankaran et al., 2007) by means of SA. To that end, we
applied several methods: a local SA, a variance decompo-
sition, and the Morris (1991) screening methods, in-
cluding adjustment for the stochastic systems.

2. Mathematical modeling of signaling pathways

The biochemical model consists of N kind of dif-
ferent substances (also called species) {S1, ..., SN} and
M reactions between them. Each reaction may be pre-
sented in the following form:

(1)

where νmn and ν–mn denote amounts of molecules of n -th
substance that are accordingly substrate and product of
m -th reaction and the coefficient km denotes the reaction
rate (speed) of m -th reaction. 

2.1. Deterministic modeling – ordinary differential
equations derived from the mass action law

The mass action law by Guldberg and Waage (dated
at year 1864) constitutes the basis for chemical kinetics.
According to this law, the probability of molecules colli-
sion at each time point depends only on the number of
molecules in a volume unit of a modeled system and
their mean kinetic energy, and the reaction rate is pro-
portional to the concentration of all involved reagents.
The Guldberg-Waage’s law can be expressed using the
following formula:

(2)
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where νmn = ν–mn !νmn denotes a stoichiometric coefficient
of n -th species in m -th reaction and [Sn] denotes the con-
centration of n -th species. Finally S

·
  denotes a derivative

of variable S in respect to time. To simplify the notation
and to avoid a division by zero without the restriction of
the generality, it is assumed that all reactions consist
only of species with a nonzero stoichiometric coefficient.
In other words, all considered species take part in
the reaction either as a substrate or as a product. By
adding all above equations (2) we obtain the following
differential equation describing the change in the con-
centration of a substance Sn in the time flow:

(3)

Commonly, the concentration is measured in a mole
of the substance that coincides with one liter of a solu-
tion, i.e. the molar concentration (1M = 1 mol/1 liter). To
express the amount of the substance in molecules
number one has to multiply the molar concentration by
NAV factor, i.e. +#Sn , = NAV [Sn ] where NA denotes the
Avogardo number and V denotes the volume of the
system. Accordingly, the differential equation (3) can be
expressed as a change in the number of the molecules of
an n -th substance in the time flow:

              
                 # Sn

(4)
                               × #S ..... #S .m mN

N1
1ν ν

This operation is allowed only for systems with a large
number of molecules, where one can assume that
the change of the mean number of molecules is appro-
ximately continuous.

2.1.1. Numerical integration

A basis for the analysis of biochemical reactions
networks expressed in the form of ODEs is their numeri-
cal integration. Among many methods for this task,
the most popular are families of the predictor-corrector
methods (e.g. Runge-Kutta) or the linear multistep me-
thods (e.g. Adams-Moulton for non-stiff or backward dif-
ferentiation formula for stiff systems; Butcher, 2003).

2.2. The Chemical Master Equation (CME)

CME is indeed an alternative form of Chapman-Kolo-
mogorov equation for the Markov process (Kampen,
2007). A precise derivation of the CME was introduced by

Gillespie (1992). Assuming a thermal balance and an even
distribution of the substance that is in a gaseous state, he
proposed a mathematical formulation for the problem of
one-directional bimolecular reactions. Moreover, he gave
a reasoning for mono- and trimolecular reactions. Con-
cerning that all two-directional reactions could as well be
divided into two one-directional reactions and each re-
action with more than two substrates can be expressed as
a sequence of bimolecular reactions, the reasoning ap-
pears to be in-depth (Goutsias, 2007).

The following steps have been implied by Gillespie
(1992) to derive the CME. The model is based on
the same assumptions as in the Section 2.1 and it de-
scribes an evolution of a system with M possible re-
actions involving N different species.

The state of the system at each time point t is
described by the vector X(t ) = (X1(t ), ..., XN (t )), where
Xn(t ) denotes the number of molecules of an n-th sub-
stance at time point t. Each of the M reactions can be
explicitly identified by three values:
C a vector of stoichiometric coefficients νm = (νm1, ...,
νmN) for species S1, ..., Sn respectively,

C the number of all possible substrates combination
hm(x1, ..., xN) for each system’s state X = (x1, ..., xN),
xn 0 N,

C the stochastic reaction’s coefficient cm that is scalar
such that cmdt denotes the probability of reacting of
substrates combination randomly chosen from a sub-
strates set of the reaction Rm in the infinitesimal
time interval [t, t + dt ).
Assuming that the initial state of the system is

known X (t 0) = (x 0
1, ..., x

0
N ) = x0 at the initial time point

t 0, as well as coefficients cm of all stochastic reactions,
the vector of stoichiometric coefficients νm and the func-
tion hm that indicates the number of all possible combi-
nation of substrates for each system state X, one can
determine the time evolution of the system. Let
P (x, t | x0, t 0 ) mean the conditional probability of
the system being in state x = (x 1, ..., xN) at a time point
t, provided that X (t 0 ) = x0. Under the assumptions of
a uniform distribution of substances throughout the vo-
lume and thermal equilibrium, the probability of occur-
rence of a reaction in a short time interval depends only
on the number of species at the time, and not on the pre-
vious states of the system. In disjoint time intervals,
reactions occur independently. In an infinitesimal time
interval (t , t + dt ) the probability of:
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C occurrence of exactly one reaction Rm is equal to
cmhm (x) dt + o (dt ),

C no reaction occurrence is 1!3M
m = 1cmhm(x) dt + o (dt ),

C more than one reaction occurrence is o (dt ).
For each time point t 0 [t 0, t + dt ), there are three pos-
sible path evolutions:
C at time point t, the system is already in the final

state x and no reaction has occurred in the time
interval [t, t + dt ),

C at time point t, the system was in one of M previous
states x – νm and exactly one reaction Rm had oc-
curred in the time interval [t, t + dt ),

C in the time interval [t, t + dt ) occurred more than
one reaction.

As these possible path evolutions are disjoint random
events and there are no other possibilities, the probabi-
lity of the system being in state x after time t + dt is
equal to the sum of the probability of those three ran-
dom events. Knowing that in the time intervals [t 0, t )
and [t, t + dt ), reactions occur independently we obtain:

P      P

   P (5)

Subtracting P (x, t | x0, t 0 ), dividing by dt and going to
limit with dt 6 0, we obtain the Chemical Master Equa-
tion:

  P

 P         (6)

  
        

   P

2.3. Converting the deterministic into a stochastic
model

To obtain a stochastic counterpart of the determini-
stic model one has to determine the stochastic coeffi-
cients cm of each reaction Rm, and the function hm set for
all possible system states. The stoichiometric coeffi-
cients vector νm is the same as in the deterministic mo-
del. The main difficulty is to determine stochastic coeffi-
cients cm.

Although stochastic and deterministic models are
based on the same assumptions, a stochastic model bet-

ter reflects the described reality as it takes into account
the impact of fluctuations on the mean value of the mole-
cules number.

The following method for derivation of cm and hm is
based on Wolkenhauer et al. (2004). As we remember,
function hm returns the number of possible substrates
combination for a reaction Rm for each system state
x = (x 1, ..., xN). Knowing that an m -th reaction involves
νmn molecules of n -th kind, the number of possible com-
bination is the following:

                                                                                
(7)

For a sufficiently large number of x n the above for-
mula can be approximated by:

(8)

Let #Rm denotes the occurrence number of reaction
Rm in the time interval [t, t + dt ). #Rm is a random varia-
ble with possible values in the set {0, 1, 2, ...} and pro-
bability distribution as follows:
C probability of #Rm equal to 0 is 1 – am dt – o (dt ),
C probability of #Rm equal 1 to is am dt,
C probability of #Rm greater than 1 is negligible and

denoted by o (dt ).
Where am = hmcm denotes the propensity function of re-
action Rm. The expected value of the occurrence number
of a reaction Rm in the time interval [t, t + dt ) is

                   E  #       E (9)

The propensity function am, is not constant and depends
on the system state x. From the equation (4) one can
obtain an alternative formula for the mean value of Rm in
the time interval [t, t + dt ):

      E #         E # (10)

where #Sn denotes the random variable for the number
of molecules of n -th substance. By comparing both for-
mulas (9) and (10) for the mean number of reactions Rm

in a very short time interval, one obtains the propensity
function of reaction Rm:

         E        E  # (11)
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Using approximation (8) and definition of the propensity
function am:

E      
E            #

(12)

Finally, by the assumption of a lack of fluctuation and
lack of correlation between molecules number of each
substance, using relation E (#Si

ν- mi ... #Sj
ν- mj ) = E(#Si )

ν- mi 
 ... E (#Sj )

ν- mj, and comparing formulas (11) and (12), sto-
chastic reaction’s coefficients can be obtained:

(13)

With this reasoning, one gets formulas (7) (or (8) for
function hm, as well as above formula (13) for reactions
coefficients cm. The last step of this stochastic model
formulation is setting of the obtained values into
the CME (6).

3. Sensitivity analysis methods

Sensitivity analysis is used to determine dependen-
cies between input parameters and the results of the mo-
del. One can chose as input parameters for example ini-
tial concentrations of modeled species or reaction rates.
Result of the model is most commonly defined as
the density of species in any time point t. SA is very use-
ful in mathematical modeling, as it describes dependen-
cies between different elements of the model, it is also
applicable to empirical experiments planning and ena-
bles verification of theoretical model results together
with numerical and empirical results. SA also enables
recognition of model’s errors whether conceptual or in
implementation. A more detailed description of different
SA methods can be found in Campolongo et al. (2000).

SA techniques can be divided into three types: local
methods, screening methods and global methods. In this
section, all this three types are briefly characterized,
some examples are additionally provided and subse-
quently applied to the ligand-receptor model.

3.1. Local methods

In empirical science, the most commonly used me-
thods are local methods. Local analysis is set in the fol-
lowing manner. Let the model be dependent on N para-

meters {x1, ..., xN} and let the result of the model be de-
noted by y = f (x1, ..., xN) = f (x). It is assumed that
the initial values of parameters were measured experi-
mentally x~ = {x~1, ..., x~N}. The local SA describes the mo-
del fluctuation in the surrounding of x~ under specified
parameters disruption.

The measure of influence of an i -th parameter is de-
fined by partial derivative with respect to this parameter
set in point x~.

(14)

The value Si is called i -th sensitivity coefficient of the mo-
del. Local sensitivity coefficients are often normalized:

(15)

One normalization is with respect to the mean value and
the other one is with respect to the standard deviation.

Normalization is important especially for models
where the investigated parameters differ by several or-
ders of magnitude. An alternative approach was descri-
bed by Degasperi and Gilmore (2008), where to deter-
mine the sensitivity of the model to the parameter dis-
ruption, instead of absolute measure, the relative mea-
sure of the result change was used. The value:

(16)

was substituted by

(17)

In this paper, both approaches using the normalized sen-
sitivity coefficients and the relative sensitivity measure
have been introduced for the ligand-receptor model.

An important advantage of the local SA is the simple
concept and low computational cost. This approach is
particularly useful in testing the models described with
systems of complex differential equations with multiple
variables and many parameters. The local methods are
used in the first stage of model analysis which provides
the overview of the problem. Local techniques have pro-
ven useful in inverse problems issues, in which estima-
tion of the parameters describing the model is made on
the basis of the observed results of the model (Campo-
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longo et al., 2000). More applications of local SA can be
found in Turanyi (1990).

3.2. Global methods

The second and more profound approach is a GSA.
Assuming that the value of each parameter xi varies in
the range of values Ωi , one explores the whole variability
space Ω = Ω1 × AAA × ΩN instead of limited surrounding of
some point x~ = (x1, ..., xN) of parameters values. Never-
theless, finding a well-defined and computationally effi-
cient measure of global sensitivity of the model is not
easy.

To determine the single impact of i -th parameter on
the outcome of the model, the following estimator is
used:

          D   E (18)

where E (Y |Xi = xi
* ) denotes the conditional expectation

of variable Y, given that the value of i -th parameter is
equal to xi

* (the (N ! 1)-dimensional integral with res-
pect to (N ! 1) other parameters). While the variance
takes into account all possible values of variable Xi (one-
dimensional integral).

To measure the impact of the interaction between
parameters xi and xj on the system outcome y, following
measure is used:

          D   E  D   E        D   E

(19)

An analogous approach is used for larger groups of
parameters. In this way, one obtains the distribution of
the variance of variable Y into components according to
their increasing dimensionality:

               D (20)

The variance distribution (20) is unambiguous, only if
the model parameters are independent (Sobol and
Kucherenko, 2005). By dividing each of the components
of this sum by the total variance of V = D2(Y ), global
sensitivity coefficients of the model is obtained:

(21)

Other possible approach is to use total sensitivity indi-
ces, introduced by Sobol (1993). This allows to estimate

the impact of a single parameter on the variance of
the model outcome, as well as the impact of all other
possible combinations of parameters. For example, if
a tested model depends on three parameters, the total
sensitivity indices of x1 is understood as: S T

1 = S 1 + S 12 +
S 13 + S 123. In determining the indicator S T

i , the following
value is estimated:

                                    
E  D

    D (22)

where, by D 2(Y | X! i ) the variance of variable Y is de-
noted, for set parameters values except the value of i -th
parameter.

(23)

Sensitivity coefficients Si and S T
i  have simple interpre-

tation. The value of Si contains information on how much
the total variance of the model could be reduced if
the exact value of i -th parameter were known, while coeffi-
cient S T

i  corresponds to the part of the total variance
which would remain if the only unknown parameter were
xi and the values of all other parameters were determined.

One of the most important methods of a global sensi-
tivity analysis, allowing for the estimation of coefficients
described above, is based on Fourier analysis of the Fou-
rier Amplitude Sensitivity Test (FAST algorithm). An-
other important method is Sobol’s method (Sobol,
1993), which consists of calculation of multidimensional
integrals using the Monte Carlo method. The FAST
method is described in detail below, and used to analyze
the sensitivity of the ligand-receptor model. For other
concepts of global SA, refer to Campolongo et al. (2000).

3.2.1. The Fourier Amplitude Sensitivity Test (FAST)

The classical FAST method enables to estimate only
the first-order global sensitivity coefficients Si. The ex-
tension of FAST method that enables to calculate
the total sensitivity indices S T

i , was presented in Saltelli
et al. (1999).

Let X = (X1, ..., XN ) be a random vector of para-
meters with a uniform distribution on the cube Ω =
[0, 1]N. The model outcome Y = f (X) is the random varia-
ble dependent on the parameters vector. Let K be
a curve along which one investigates the space of varia-
bility. And, let the curve K be set by:
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(24)

where s takes all real values. Transformation Gi is defi-
ned in such a way as to ensure the sampling of para-
meters in accordance with the adopted probability distri-
bution. Let {Ti}

N
i = 1 denote the set of different frequen-

cies appropriately selected for each parameter. The choi-
ce of function Gi was, in general, discussed in Cukier
et al. (1978).

Let f (s) = f (X1 (s), ..., XN (s)) be the paramete-
rization of the model outcome. Then the variance of
the model outcome takes a form:

                          D (25)
                    

The model outcome Y = f (s) as a periodic function can
be presented in the form of a Fourier series:

(26)

where coefficients Aj and Bj , are defined as follows:

(27)

Adopting the reasoning from Saltelli et al. (1999), let
Λj = A2

j + B 2
j  denote the amplitude spectrum of the func-

tion f (s). As per the Parseval theorem it is: 

                      (28)
Z

By comparing the equations (25) and (28) and using
the relationship between Fourier coefficients A!j = Aj ,
B!j = !Bj, Λ!j = Λj the variance estimator for random
variable Y  is obtained:

                       (29)
             Z

At the same time, we obtain the estimator for the con-
ditional expectation of variable Y given Xi (comp. (18))

                    (30)
                              Z

Finally, having estimators values V$  and V$i  one can esti-
mate the value of sensitivity coefficients for i -th para-
meter: S$ i  =V$ i /V$ .

3.3. Screening methods

Screening methods are a variety of qualitative global
sensitivity analysis. They allow to explore the entire
variability space of parameters Ω at a relatively low com-
putational cost. The purpose of the analysis is to deter-
mine which parameters significantly influence the out-
come of the model, and to identify those parameters that
affect the outcome negligibly. Screening methods allow
to rank the parameters in order of a decreasing effect on
the model outcome, but not the quantitative relationship
of this impact. Screening methods are applied to deter-
mine the sensitivity of complex models, depending on
many factors, as well as models with a high evaluation
cost. One of the screening methods is the Morris me-
thod, presented below, used for SA of the ligand-recep-
tor model.

3.3.1. The Morris method

The Morris method (Morris 1991) can be classified
as a technique on the borderline of global and local me-
thods, because it takes into account the whole variability
space Ω, however, at each test point of Ω, one carries
a local SA. The algorithm of the Morris method belongs
to screening methods. It determines which parameters
have a (i) linear and additive (ii) resulting from the non-
linear interaction of the other parameters, or (iii) negli-
gible influence on the model outcome. 

Without any loss of generality, one can assume that
the variability space is an N -dimensional unit cube Ω
= [0, 1]N. Let us consider the discrete variability space in
which each parameter can assume p values:

(31)

one receives an N -dimensional p -leveled network of pa-
rameters covering the space Ω. Let Δ denote a fixed
multiple of the fraction 1/p ! 1 . Let x = (x1, ..., xN ) be
a chosen point of the network, so that the point (x1, ...,
xi !1, xi + Δ, xi +1, ..., xN) also belongs to the network.
The elementary effect of i -th parameter disturbance at
point x can be determined by the following difference
quotient:

(32)

This is an approximation for a partial derivative of
the model outcome in respect to parameter xi counted in
point x at the network. The method provides for each
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parameter xi  an independent drawing of R points at the
network corresponding to different sets of parameters of
the model, and calculation of the difference quotients di

for the drawn parameters, creating sample Fi.
Based on the characteristics of sample Fi, one can

infer regarding the impact of a given parameter on the
outcome of the model. A feature that allows to rank
the parameters according to their decreasing signifi-
cance is a measure of location, for example the mean
value. A large absolute value of the mean of the sample
E(Fi) indicates that parameter xi is important to the mo-
del outcome and it cannot be ignored in a subsequent
analysis. On the other hand, a small absolute mean value
indicates a negligible effect of the i-th parameter on the
outcome of the model. Therefore, to simplify further
analysis, this parameter can be treated as a constant.

Dispersion of the sample Fi, measured for example
with the standard deviation (Morris, 1991), provides in-
formation on the nature of the impact on the outcome of
a given parameter. A large dispersion of the sample
means a nonlinear impact of parameter xi on the model
outcome, or influence of this parameter on the model
outcome by interacting with other parameters of the mo-
del.

3.4. Stochastic sensitivity analysis

The so-far described methods of SA have been de-
veloped for deterministic ODE models. The stochastic
sensitivity analysis requires a slightly different approach
as presented by Degasperi and Gilmore (2008) and Gun-
awan et al. (2005).

In the case of deterministic models in an SA for a gi-
ven set of input parameters always the same results are
obtained. Contrary to this, the result of a stochastic
simulation model is a random variable and for fixed ini-
tial data it takes, different value each time. The distribu-
tion of this random variable can be estimated from many
simulations.

A comparison of the results of a deterministic model
calculated for different sets of input parameters does not
cause any difficulties. However, in the case of stochastic
models there is a need to measure the distance between
two probability distributions. One possibility is to com-
pare the average of both distributions. Doing so, how-
ever, forces the assumption of normality of these distri-
butions and does not take into account the variance of

the results. Therefore, a better solution is to use mea-
sures of distance between distributions, for example,
the distance of histograms or the Kolmogorov distance.

Let S denote a sample of size |S | drawn from some
probability distribution, and let T denote a sample drawn
from another distribution, with |T | elements. A distan-
ce of histograms for these samples is defined as follows
(Degasperi and Gilmore, 2008):

(33)

where k denotes the column number of the histograms,
Ii denotes the range of values of i -th histograms’ column,
s and t are elements of the sets S and T accordingly, and
χ (·, Ii) denotes the characteristic function of an i -th
interval Ii.

Notice that a self distance of histograms (two sam-
ples from the same distribution) will be generally diffe-
rent from zero. Therefore, in the assessment of the dis-
tance of histograms for the results obtained for the ini-
tial data and the perturbed data, one should compare
this distance with the distance of histograms calculated
for the two sets drawn from the initial distribution.
If both values are comparable, then one cannot conclude
a significant influence of parameters disturbance on
the outcome of the model.

An alternative measure for a distance of distributions
is the Kolmogorov distance, which is defined as the maxi-
mum of absolute value of distance of empirical distribu-
tion functions at each point t :

                                       t
(34)

Also for this measure, the distance between two samples
from the same distribution is generally different from
zero.

4. Case-study of a ligand-induced receptor activa-
tion and receptor internalization 

As an illustrative example of the presented ideas we
consider the mathematical model of ligand-induced re-
ceptor system from Shankaran et al. (2007). We transfor-
med the classical deterministic version into a stochastic
model. For both models, appropriate SAwere applied.

The model reflects a system of cell surface receptors
in a single cell and describes the time evolution of three
different species: ligands L in the intercellular space,
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free receptors R on a cell membrane and ligand-receptor
complexes C. One of the model’s parameters is the vo-
lume measure of the intercellular space that falls for
a single cell. All processes that can occur in the modeled
system are shown in Figure 1. Ligands are emitted into
the intercellular space with intensity f  from some source
S. Ligands bind with free receptors on a cell membrane
into complexes C with a factor k on. The complexes can
again fall into parts with a factor k off or be internalized
into a cell with a factor k e. The cell produces new recep-
tors with an intensity q  and absorbs free receptors (non-
bound with ligands) with an intensity k t. In summary,
the system of reactions is the following:

(35)

Using the Mass Action Law, two differential equations sy-
stems can be derived, one for the distribution of reagents:

(36)

and the other for the mean number of molecules:

       #                            #      #              #

       #                              #      #              #             #

       #                 #      #              #             #
(37)

Following Shankaran et al. (2007) we investigate four
types of receptors:
C epidermal growth factor receptor, (EGFR), which

stimulates cell division and plays an important role
in the process of tumor formation,

C transferrin receptor (TfR), responsible for the trans-
port of iron into cells,

C low-density lipoprotein receptor (LDLR), transpor-
ting cholesterol into cells,

C vitellogenin receptor (VtgR), which mediates the up-
take of vitellogenin (Vtg) in oocyte development.
Table 1 contains the experimentally measured re-

action rates for these four types of receptors.

Fig. 1. Reactions scheme in the ligand-induced receptor sy-
stem, see Shankaran et al. (2007). V – volume measure for
the cell, L – ligands, S – source of ligands emission, R – free
receptors, C – complexes of receptors bound with ligands

If there is no ligands emission into the intercellular
space and therefore no complexes of ligands and recep-
tors can be formed, then the number of free receptors
on the cell surface is described simply by:

                             #                         # (38)

In this case, the stationary state of the mean number of
receptors is RT = q NAV / k t .
This implies that the reaction rate of free receptors pro-
duction is q = R Tk t / NAV .

The reaction rate f  describing a ligand emission rate
is one of the model parameters, so as the intercellular
volume for cell V . Typically V  is between 4 × 10!13 l (cell
volume) and 4 × 10!10 l (for fluid tissue). The value used
in the computation of the model is V = 4 × 10!10 l.

4.1. Stochastic version of the model

Let X(t ) = (xL, xR, xC ) denote a random vector of
a modeled system state in time point t, where xL denotes
the number of ligands in the intercellular space, xR deno-
tes the number of free receptors and xC denotes
the number of the ligand-receptor complexes. Basing on
the modeled reactions scheme (35) one can determine
the stoichiometric coefficients:
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Table 1. Values of reaction rates for receptors EGFR, LDLR, TfR and VtgR

Receptor kon
M !1 min !1

koff
min !1

ke
min !1

kt
min !1

RT
no of molecules

EGFR 9.70 × 107 0.2400 0.150 0.020 2.0 × 105

LDLR 2.48 × 106 0.0354 0.195 0.195 2.0 × 104

TfR 3.02 × 106 0.0900 0.600 0.600 2.6 × 104

VtgR 5.76 × 104 0.0700 0.108 0.108 2.0 × 1011

(39)

Moreover using formulas (7) and (13), one can obtain
the propensity function of each modeled reaction:

(40)

Once the stoichiometric vectors νm and the propensity
functions am (x) are known, it is possible to formulate
the Chemical Master Equation corresponding to the sto-
chastic model of the system describing the ligand-recep-
tor evolution. In order to simplify the notation, we deno-
te the probability P (x, t | x0, t 0) of the system being in
state x = (xL, xR, xC) in time point t given the initial state
of the system X (t 0) = x0, by pt (x). For this model,
the CME has the following form:

(41)

4.2. Sensitivity analysis of the model

The proper measure of the modeled system is
the reaction time in response to the change in the num-
ber of ligands. To enable comparison of the behavior of
different receptors, the dimensionless relaxation time τ
that indicates the rate of return to equilibrium after
the introduction of a dose of ligands was defined as in
Shankaran et al. (2007). Let KD = koff / kon, using the fol-
lowing substitution:

                      #                     #                    # (42)

the deterministic version of the model was incorporated
in order to transform the system of differential equations
(37) into an equivalent form:

(43)

where the dimensionless time was denoted by t * = tk off

and four new dimensionless parameters were intro-
duced:

(44)

Let us consider the equilibrium state of a ligand-receptor
model with no ligand molecules L* = 0, R * = 1, C * = 0
and suppose that at the initial time t * = 0 a single ligand
dose was introduced into the system. The nature of the
time evolution of a dimensionless average number of
the cell surface complexes C * is the same as for the
number of complexes of C  in the original model, i.e.
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the value of C * rapidly increases and after reaching the
maximum value will slowly decline, seeking to balance
state of the equilibrium. The point at which the value of
C * falls below the value of maximum limit times 1/e is
called the dimensionless relaxation time and is denoted
by τ. A short relaxation time means a smooth operation
of the system of cell membrane receptors, but the large
values of τ indicate that the transmitted information
(in case of receptors taking part in cellular signaling) or
transmitted substance (for transporting receptors) will
slowly reach the target cell. By conducting a formal SA
of the receptors model, the relaxation time is taken as
an outcome of the model and its sensitivity to the para-
meters disruption is examined.

To find the output value τ one must calculate the di-
mensionless coefficients according to formula (44). As-
suming that the ligands inflow into the system appears
only at the initial moment, we obtain f * = 0. The next
computation step is the numerical solution of the equa-
tions system (43) with the initial conditions:

(45)

Let C *
max denote the maximum value of C * reached at

time point t *
max. Solving the interpolation problem C * (τ)

= C *
max /e for τ > t *

max , one receives a dimensionless re-
laxation time of the system.

As a matter of fact it is not necessary to solve the di-
mensionless system of differential equations (43), in
order to calculate the output value τ. It is enough to
solve the system (37) (or equivalently (36)) with the ini-
tial conditions: +#L, = 0,01KDNAV, +#R , = RT, +#C , = 0,
and then find the value t > tmax  next to the time point tmax

– the moment of the maximal complexes number Cmax,
with C (t ) = Cmax /e. After the scaling one obtains the di-
mensionless relaxation time τ = tk off .

In the same way one can find the value of τ, using a
stochastic version of the model. The relaxation time in
this approach is a random variable. Using a stochastic
simulation algorithm for the fixed parameters, one ob-
tains the trajectory of a process of change of the number
of substances in the system. Then, one finds a point t, in
which the value of C falls below 1/e of the maximum va-
lue. After multiplication of t by k off one obtains the di-
mensionless relaxation time.

In the next sections of this paper, the local and
the Morris method have been introduced for the classi-

cal as well as the stochastic SA. For the deterministic
version of the model, the global FAST methods were
applied.

4.2.1. Local methods
We applied the local method of sensitivity analysis to

the deterministic version of the ligand induced mem-
brane receptors model for the previously mentioned four
types of receptors. The aim of the analysis was to exa-
mine the influence of parameters V, k on, k off, k e, k t and
R T on the dimensionless relaxation time τ. The para-
meter f, denoting the rate of ligands production was omi-
tted (f = 0), because a single dose of ligands entering
the system was modeled by adopting the initial value L*.
The parameters values were set as in Table 1 and
a change of parameters values – 10% increase was consi-
dered. The relaxation times for initial and disturbed va-
lues were numerically calculated from the equation (43)
with the initial values (45).

Because the values of the measured parameters vary
by several orders of magnitude, for the sensitivity mea-
sure the normalized local coefficients were used (15),
multiplied by the face value of the parameter and divided
by the nominal relaxation time. Results of our analysis
are shown in Figure 2. Comparing the results obtained
for different receptors, one can notice two common fea-
tures of all studied systems. In each case, the parameter
k t turned out to be irrelevant to the relaxation time, as
an outcome of the model. Furthermore, for each system,
its sensitivity to the disturbance of parameter k on was
the same as its sensitivity to the disturbance of para-
meter RT. Referring to the reactions scheme in the li-
gand induced receptor model (35) one can explain
the first observed common feature. Both the production
rate of membrane receptors and the rate of absorption
of free receptors, are proportional to parameter k t.
Since these are reverse reactions, the effect of para-
meter disturbance is equalized. The second observed re-
gularity can easily be explained, referring the dimension-
less form of the model (43) and noting that only the co-
efficient γ depends on both parameters k on and RT and is
proportional to these parameters. Thus, sensitivity of
the model to these parameters must be the same.

For the EGFR, LDLR and TfR, the same order of
sensitivity to the parameters was obtained. The EGFR
are highly local sensitive to disturbance of the parameter
k off and moderately sensitive to disturbance of all other
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Fig. 2. Results of the local sensitivity analysis of the deterministic version of the ligand induced membrane receptors model.
The vertical axis shows the normalized local sensitivity coefficients: Si = xi~ /τ~ × M /Mxi × τ, where xi~ denotes the face value

of parameter xi and τ~ denotes the relaxation time for the face values parameters

parameters (except k t). Both transporting receptors
LDLR and TfR showed similar sensitivity to parameter
disturbances. Compared to other receptor systems,
transport receptors LDLR and TfR exhibit low sensitivity
to disturbance of the parameter k e. Different results
were obtained for the receptor VtgR which proved to be
most sensitive to disturbances of parameters k off and k e

and relatively low sensitive to changes in other para-
meter values. The results of the local SA correspond
with the results presented in Shankaran et al. (2007),
and with the results obtained for simulations carried out
for the SA of the stochastic model of ligand induced
membrane receptors.

Moreover, for the EGFR, we carried out a stochastic
local SA. For this purpose, seven sets of parameters
were considered – a set of face values of parameters,
and six sets in which one of the six parameters were in-
creased by 10%. For each set, 5000 simulations of tra-
jectories were performed, and on this basis dimension-
less relaxation time was calculated according to the pro-
cedure described in the introduction of this section. For

Fig. 3. Results of the local stochastic sensitivity analysis of
the EGFR. On the vertical axis is the Kolmogorov distance be-
tween distributions of the relaxation time τ obtained for the no-
minal and increased by 10% parameters values. SelfDist means
the distance of two samples generated for non-disturbed data.

Samples size was 5000

a set of face values, simulations were performed twice to
determine the distance between histograms of two samp-
les drawn from the  same  distribution. The  result  was
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5000 elements samples from distributions of the random
variable τ for different parameters values. To compare
these distributions, we used the Kolmogorov distance.
The obtained results are illustrated in Figure 3.

The results of a local stochastic SA of the EGFR are
the same as the results of the classical SA tailored for
the deterministic version of the model. This confirms
again that for the membrane receptors model, random
fluctuations do not substantially affect the functioning of
the system and that the deterministic model well de-
scribes its dynamics.

4.2.2. Global method – FAST

Using the FAST algorithm, we examined the sensi-
tivity of the absolute relaxation time on the disturbance of
parameters: V, kon, koff, ke and RT. The results of the analy-
sis are shown in Table 2 and in Figures 4 and 5. The first
column of figures contains the estimators of sensitivity
coefficients S$ i for the studied systems of membrane re-
ceptors. The second column illustrates the differences be-
tween the obtained total sensitivity coefficients and first-
order sensitivity coefficients S$ i

T ! S$ i .
The analysis of the results of the FAST method leads

to two important conclusions common for all the receptor
systems. First of all, for each tested receptor, the sum of
sensitivity coefficients Si is close to unity. Thus, the dif-
ferences between the total sensitivity coefficients and
the first-order sensitivity coefficients are close to zero.
This means that in the studied systems, the impact of
the interaction between the parameters on the dimen-
sionless relaxation time is negligibly small and the model
behaves in a linear fashion.

Furthermore, for each tested receptor, parameter
koff was the most important for the relaxation time.

In the EGFR system, parameter koff explains almost
50% of the total variance of the model, while the remain-
der of the variance is more or less equally distributed be-
tween the other parameters. Both transporting recep-

tors, LDLR and TfR, have the same pattern of sensiti-
vity, which indicates a strong connection between
the dynamics of modeled reactions performed by recep-
tors and their role in functioning of the organism. A cha-
racteristic feature of these systems is non-dependence
of the relaxation time on the parameter ke. The influence
of other parameters on the variance of the model out-
come is moderate and ranges from 20 to 30%. However,
in the case of receptor VtgR, the only parameters that
affect the relaxation time of the system, are koff and ke.
Their combined effect on the outcome of the model ex-
ceeds 97% of the total variance.

It should be remembered that the coefficient β is
defined as the ratio of parameters ke and koff (44). The
parameter ke denotes the rate of endocytosis of ligand-
receptor complexes, whereas the value koff is the rate of
disintegration of the complex to free ligand and free re-
ceptor. Thus, the coefficient β can be interpreted as
the probability that the bound ligand is absorbed into
the cell before it detaches from the receptor. The value
γ is proportional to kon the rate of binding into complexes
and to the number of free receptors on the membrane
denoted by the parameter RT and inversely proportional
to koff the rate of disintegration of the complexes and vo-
lume of the system V. The value of coefficient γ indicates
how well a receptor can catch free ligands from the inter-
cellular space. Therefore, dimensionless coefficients β and
γ characterize two independent and complementary fea-
tures of membrane receptors, i.e. the ability to capture
ligands from the intercellular space and the effectiveness
of their absorption into the cell. The results of the SA of
the model outcome to the dimensionless parameters are
shown in Table 3 and Figure 6.

Also in the case of an SA of the dimensionless ver-
sion of the membrane receptors model, the sum of
the first-order sensitivity coefficients is close to unity, so
the interaction between the dimensionless parameters

Table 2. Results of the global sensitivity analysis of the receptor model using the FAST algorithm

EGFR LDLR TfR VtgR

Si S T
i Si S T

i Si S T
i Si S T

i

V 0.143 0.146 0.215 0.219 0.218 0.222 0.003 0.008

kon 0.144 0.148 0.238 0.241 0.241 0.245 0.003 0.008

koff 0.483 0.487 0.309 0.314 0.300 0.305 0.528 0.533

ke 0.093 0.096 0.007 0.008 0.005 0.006 0.449 0.456

RT 0.138 0.141 0.215 0.219 0.218 0.222 0.002 0.008
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Fig. 4. Results of the global sensitivity analysis of the EGFR and LDLR receptor models using the FAST algorithm

Fig. 5. Results of the global sensitivity analysis of the TfR and VtgR receptor models using the FAST algorithm
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Table 3. Results of the global sensitivity analysis of the membrane receptors model conducted using an extended version
of the FAST algorithm. The dimensionless relaxation time τ as a function of dimensionless coefficients α, β and γ

EGFR LDLR TfR VtgR

Si S T
i Si S T

i Si S T
i Si S T

i

α 0.000 0.001 0.000 0.002 0.000 0.002 0.000 0.000

β 0.416 0.419 0.024 0.027 0.017 0.019 0.985 0.991

γ 0.582 0.585 0.972 0.975 0.980 0.983 0.010 0.017

Fig. 6. Results of the global sensitivity analysis of the membrane receptors model conducted using the FAST algorithm.
The dimensionless relaxation time τ as a function of dimensionless coefficients α, β and γ

has no significant impact on the relaxation time. In each
of the studied systems, the importance of the factor α is
negligibly small. This regularity results from the defini-
tion of coefficient α equal to the quotient of the para-
meters kt and koff and lack of materiality of parameter kt

shown by the local SA.
The obtained results show different ways of functio-

ning of various systems of membrane receptors. For
the EGFR, which is involved in cell signaling, equally im-
portant is the ability to capture ligands from the inter-
cellular space, as well as the ability to effectively commu-
nicate the information to the target cell. The proper
functioning of transporting receptors LDLR and TfR

depends entirely on the effective catching of ligands.
However, in the case of VtgR, the only important feature
appeared to be the ability to carry out the process of endo-
cytosis. The dimensionless form of the SA of a membrane
receptors model enabled better understanding of the ope-
rational principles of the considered systems.

4.2.3. Screening method – Morris method

Finally, we applied the Morris method in the SA.
The aim was to investigate the dependence of the di-
mensionless relaxation time τ on parameters V, kon, koff,
ke and RT. As before, the parameters f and kt were omit
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Fig. 7. Results of the Morris method for the deterministic version of the model of membrane receptors. The parameter values were
drawn from the set {90%x~i , 92%x~i , ..., 110%x~i }, where x~i denotes the face value. For each parameter, the sample size was 1000

ted, because the local SA showed that their effect on
the outcome of the model is irrelevant.

The range of variation of each parameter was set at
90% to 110% of its face value x~i . We assumed that the pa-
rameter can obtain with equal probability one of the fol-
lowing values: {90%x~i , 92%x~i , ..., 110%x~i }. Conse-
quently, we obtain a 5-dimensional, 11-leveled network
ω of parameter values.

For each parameter, the set of 1000 mesh points
was drawn independently from ω excluding the edges
points. We solved the system of dimensionless equations
(43) with initial conditions (45), finding the value of τ for
the sets of parameters corresponding to the points in
the grid one notch to the left and the right of each drawn
point and calculating the differences in relaxation times.
In Figure 7, the average value and dispersion of the ab-
solute difference in relaxation times was shown.

The obtained parameter order, arranged according
to their decreasing effect on the outcome of the model,
is different from that obtained in the local SA. More im-
portant, however, is the fact, that once the results are
classified into parameter groups of significant, modera-

tely significant and irrelevant for the relaxation time,
the results of both methods are consistent.

We also conducted a stochastic SA of the EGFR model
with the Morris method. The results are presented in Fi-
gure 8. The order of parameters for the EGFR model
indicated by the stochastic version of the Morris algo-
rithm is different than that achieved by the classical me-
thod, but the classification of parameters to significant,

Fig. 8. Results of the stochastic sensitivity analysis of the EGFR
model conducted with Morris method. SelfDist means the distance

of two samples generated for non-disturbed data
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moderately significant and insignificant has been preser-
ved. Thus, also in this case, the deterministic model well
enough describes the processes occurring in the system
of membrane receptors.

5. Conclusions

Transport of particles into the cell as well as cell sig-
naling is carried out by receptors located on the cell
membrane. This paper focuses on mathematical mode-
ling of interactions in the system of membrane recep-
tors. We have presented the modeling framework using
the exemplary model by Shankaran et al. (2007). To illu-
strate the stochastic approach, we transformed the sy-
stem of differential equations describing the dynamics of
the system into a continuous time Markov chain governed
by a chemical master equation. We conducted the SA for
both models using various methods reviewed in the
paper. The analysis concerned the relaxation time (i.e.
the time taken for the impulse response to decay to a va-
lue of 1/e of the peak value). This parameter well cha-
racterizes the receptor system performance: e.g. a lower
relaxation time implies a faster response to the presence
of ligands. Four kinds of experimentally investigated re-
ceptors were considered, i.e. epidermal growth factor
receptor, transferrin receptor, low-density lipoprotein
receptor and vitellogenin receptor.

In all cases, the conclusions based on the results of
SA justified the use of a deterministic framework. More-
over, some of the parameters were identified as having
a negligible impact on the system performance. Last, but
not least, the SA of the membrane receptors model pro-
vided an insight into the operational principles of the stu-
died systems.
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