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Abstract
Background: Traumatic brain injury (TBI) is a significant medical crisis with no FDA-approved thera-
pies to improve functional outcomes. Key biomarkers, such as glial fibrillary acidic protein (GFAP), 
S-100 calcium-binding protein B (S-100B), and ubiquitin C-terminal hydrolase L1 (UCH-L1), are crucial 
for understanding TBI pathology. 
Materials and methods: This study integrates proteomic and bioinformatic approaches to explore 
established TBI biomarkers’ structural and functional complexities: GFAP, S-100B, and UCH-L1. 
Results: Our comprehensive secondary structure and solvent accessibility assessment, conducted 
with PredictProtein, confirmed the predominance of alpha-helices in GFAP and S-100B, while UCH-L1 
displayed a balanced mix of helices (65.00, 67.39, and 40.81%), beta strands (6.20, 0, and 17.94%), 
and coils (40.81, 17.94, and 41.26%). AlphaFold and I-TASSER were identified as the best servers for 
full-length tertiary structure prediction for the three target proteins, based on root-mean-square devia-
tion (RMSD), TM-score, and C-score assessments. Protein motif database scans predicted four, eight, 
and one protein-binding motifs and two, three, and one post-translational modifications for GFAP,  
S-100B, and UCH-L1, respectively. 
Conclusions: GFAP’s role in axonal transport and synaptic plasticity was emphasized through motifs 
such as Filament and DUF1664. S-100B’s association with neuroinflammation and oxidative stress 
post-TBI was supported by the S-100/ICaBP-type calcium-binding domain. UCH-L1’s dualistic impact 
on TBI was further clarified by the Peptidase_C12 motif. This approach deepens our comprehension 
of these biomarkers and paves the way for targeted diagnostics in TBI.

Key words: traumatic brain injury (TBI), GFAP, S-100B, UCH-L1, proteomics, bioinformatics, structural 
biomarkers, AlphaFold

Introduction 

Traumatic brain injury (TBI) is a heterogeneous con-
dition resulting from an external force on the head, caus-
ing brain damage and impairing cognitive, physical, and 
emotional functions. TBI is a significant cause of mortality 
and morbidity worldwide, particularly among young and el-
derly populations. Symptoms vary depending on the sever-
ity and location of the injury and may include headache, 
dizziness, confusion, memory loss, personality changes, 

and loss of consciousness (Dadas et al. 2018). TBI can also 
lead to chronic neurological and cognitive disorders, such 
as epilepsy, Parkinson’s disease, and Alzheimer’s disease 
(Smith et al. 2013). 

TBI diagnosis is based on clinical assessment and 
neuroimaging modalities, such as computed tomo graphy 
and magnetic resonance imaging (Cheema et al. 2024).  
Treatment strategies involve pharmacological, surgical, 
rehabilitative, and psychological interventions (Maas et al. 
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2008). Preventative measures include wearing protective 
equipment, using seatbelts, and enforcing safety regula-
tions (Langlois et al. 2006).

Biomarkers are biological indicators that can be mea-
sured to diagnose, monitor, and predict the outcome 
of TBI. They provide objective and specific information 
regarding the extent and nature of brain damage, as well 
as responses to treatment and recovery (Mondello et al. 
2021). Biomarker discovery for TBI relies on various 
approaches and technologies, such as proteomics, trans-
criptomics, and metabolomics, which enable the analy-
sis of molecular changes in the brain following injury 
(Zetterberg and Blennow 2016). Several protein biomark-
ers have been proposed for TBI, including S-100 calcium-
binding protein B (S-100B), neuron-specific enolase, tau, 
and glial fibrillary acidic protein (GFAP), each reflect-
ing different aspects of brain injury and recovery (Papa  
et al. 2016). 

Ubiquitin is a regulatory protein found in all cells of 
the body. Ubiquitin C-terminal hydrolase L1 (UCH-L1), 
a specific isoform of ubiquitin, is primarily located in 
central neurons and the neuroendocrine system but has 
also been detected in the testis, ovaries, and kidneys 
(Zetterberg et al. 2010). GFAP, a member of the in-
termediate filament family of cytoskeletal proteins, 
provides structural support to neuroglia. Neuroglia 
help maintain homeostasis, form myelin, and protect 
neurons in both the peripheral and central nervous sys-
tems. GFAP has also been detected in other cell types 
outside the central nervous system, including Schwann 
cells, myoepithelial cells, chondrocytes, fibroblasts, and 
lymphocytes (Posti et al. 2016).

GFAP and UCH-L1 are frequently used together in 
m-TBI biomarker analysis to measure the different cell 
types potentially affected by injury. UCH-L1 is associ-
ated with more diffuse brain injuries, whereas GFAP 
is typically elevated in focal injuries (Papa et al. 2012). 
The UCH-L1 and GFAP proteins are measured and re-
ported separately, with both results needed to obtain 
a final brain traumatic indicator (BTI) result. A BTI is 
reported as “positive” if either or both UCH-L1 and 
GFAP levels exceed the predetermined cutoff (Mitchell 
et al. 2020). 

S-100B, a calcium-binding protein primarily produc ed 
by astrocytes, serves as a biomarker for neural distress 
and plays a dual role in brain function (Michetti et al. 

2018). At low concentrations, it promotes neuronal sur-
vival and astrocyte proliferation, whereas at high levels, 
it induces inflammation and neuronal death (Rother-
mundt et al. 2003; Sorci et al. 2010). S-100B is involved 
in various neurological disorders, including acute brain 
injury, neurodegenerative diseases, and psychiatric con-
ditions (Michetti et al. 2018). Although often considered 
a brain-specific marker, S-100B is also synthesized in 
other tissues (Gayger-Dias et al. 2023). The protein’s 
ability to cross the blood-brain barrier remains debated, 
with recent research emphasizing the role of the glym-
phatic system in S-100B clearance (Gayger-Dias et al. 
2023). S-100B has diverse functions, including the regu-
lation of protein phosphorylation, energy metabolism, 
and cell proliferation (Sorci et al. 2010). Its levels in bio-
logical fluids are used to monitor disease progression; 
however, its broad involvement reduces specificity (Mi-
chetti et al. 2018).

Proteomics and bioinformatics are particularly use-
ful for identifying and validating protein biomarkers for 
TBI, as proteins play a crucial role in brain function 
and pathology (Kobeissy et al. 2008). Protein structure 
prediction is a fundamental aspect of computational bio-
logy and bioinformatics, aiming to determine the three-
dimensional structure of a protein from its amino acid 
sequence. This field has seen significant advancements 
with the integration of conventional computational me-
thods and deep learning techniques.

Traditional approaches to protein structure predic-
tion often involve comparative modeling, in which the 
structure of an unknown protein is inferred based on 
its similarity to one or more known protein structures. 
These methods rely heavily on the availability of homo-
logous protein sequences in databases (Jisna and 
Jayaraj 2021). In recent years, deep learning has revolu-
tionized protein structure prediction. Techniques such 
as convolutional neural networks and recurrent neural 
networks have been employed to extract complex fea-
tures from protein sequences, leading to more accurate 
predictions.

Accurate protein structure prediction is crucial for 
various applications, including drug discovery, antibody 
design, and understanding protein–protein interactions. 
As the field continues to evolve, computational methods 
are expected to become even more integral to biological 
research and medicine (Jisna and Jayaraj 2021).
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This study aims to discover biomarkers for TBI  
using an integrative approach that combines proteomics 
and bioinformatics. Additionally, it employs systematic  
in silico prediction and analysis of novel biomarker pro-
teins to interpret the structural and functional corre-
lations between known and newly determined protein 
structures. These findings could be effectively used  
in further studies as potential candidates for drug tar-
geting.

Materials and methods

Our methodology for analyzing traumatic brain injury 
biomarker proteins included predicting conserved re-
gions, domains, secondary structures, three-dimensional 
structures, post-translational modification (PTM) sites, 
signatures, and motifs.

Conserved regions

Multiple sequence alignments of GFAP (NP_002046.1), 
S-100B (NP_006263.1), and UCH-L1 (NP_004172.2) 
were performed using BIOEDIT 7.2 software (Hall et al. 
2001) to extract conserved regions through hidden Mar-
kov model (HMM) profile-profile algorithms and seeded 
guide trees. BIOEDIT 7.2 is a user-friendly biological 
sequence alignment editor that provides basic editing, 
alignment, manipulation, and analysis functionalities for 
protein sequences and is comparable to the best align-
ment techniques.

Molecular evolutionary and phylogenetic analysis

The evolutionary history was inferred using the 
Neighbor-Joining approach. To increase the probability 
of accurately observing amino acid sequences in our 
data, the maximum likelihood method was used to de-
termine the topology and branch lengths of the phylo-
genetic tree.

MEGA11 (Tamura et al. 2021) represents a signifi-
cant advancement in computational molecular evolution. 
It offers a comprehensive suite of tools for constructing 
time trees of species, pathogens, and gene families, em-
ploying rapid relaxed-clock methods to estimate diver-
gence times and confidence intervals. The software has 
been enhanced with new features, including a Bayesian 
method for estimating the neutral evolutionary probabili-
ties of alleles using multispecies sequence alignments 
and a machine learning approach to test for the autocor-
relation of evolutionary rates in phylogenies.

Domain separation

Domain separation is the first step in predicting 
a three-dimensional protein structure. The NCBI Con-
served Domains Database (CDD) (Lu et al. 2020) is a free-
ly accessible tool for annotating sequences with the posi-
tions of conserved protein domain footprints, functional 
sites, and motifs deduced from these footprints.

ThreaDom has been the top prediction server 
for protein domains in CASP12, CASP13, CASP14, 
and CASP15. ThreaDomEx, which integrates Threa-
Dom and DomEx, provides more precise predictions 
(Wang et al. 2017). ProDom is a comprehensive data-
base of protein domain families derived from a global 
comparison of protein sequences (Bru et al. 2005). 
The NCBI CDD also queries the Conserved Domain 
Database (Marchler-Bauer et al. 2015).

Secondary structure prediction

Several servers have been utilized for secondary 
structure prediction, including PredictProtein (Qiu 
et al. 2020), a meta-service that provides predictions 
of structural and functional features of proteins, such 
as secondary structure, solvent accessibility, trans-
membrane helices, coiled coils, disulfide bonds, and dis-
order regions. JPred (Drozdetskiy et al. 2015) employs 
the Jnet algorithm, one of the most accurate methods 
for secondary structure prediction. PredictProtein and 
JPred were used to analyze the exposed and buried re-
gions of GFAP, S-100B, and UCH-L1 proteins.

RaptorX, a deep learning-based method, has achiev-
ed state-of-the-art performance in contact predic-
tion in CASP12 and CASP13. Other methods, such as 
PSIPRED, SOPMA, Porter, YASPIN, and PROTEUS, 
use different neural network architectures and input 
features to predict secondary structure elements (alpha 
helices, beta strands, and coils) with varying accuracy 
depending on sequence quality and protein size.

Three-dimensional (3-D) structure prediction

Protein structure prediction, a key area in computa-
tional biology, involves homology modeling, fold recogni-
tion, and ab initio methods. Various servers, including  
I-TASSER (Zhou et al. 2022), Swiss-Model (Waterhouse  
et al. 2018), Phyre2 (Kelley et al. 2015), and GalaxyWEB 
(Ko et al. 2012), have been developed for these techniques.

I-TASSER, a top-performing platform in CASP7–
CASP14 assessments, uses iterative simulations for 
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full-length atomic model construction. SWISS-MODEL 
(Waterhouse et al. 2018), a dedicated service for pro-
tein structure homology modeling, provides access to 
a vast collection of experimentally determined protein 
structures. The Robetta server (Kim et al. 2004) offers 
automated methods for protein structure analysis and 
prediction. DeepMind’s AlphaFold (Jumper et al. 2020), 
the winner of the CASP13 competition, accurately pre-
dicts protein structures from amino acid sequences.

Model refinement

Web-based tools such as DeepRefiner (Shuvo et al. 
2021), GalaxyRefine (Heo et al. 2013), ModRefiner (Xu 
and Zhang 2011), and 3Drefine (Bhattacharya et al. 
2016) refine protein structures using energy minimiza-
tion and molecular dynamics techniques. These tools 
enhance both global and local structural features of ini-
tial protein models. The refinement process involves 
optimizing the hydrogen bonding network and applying 
composite physics- and knowledge-based force fields 
for atomic-level energy minimization (Feig and Mirjalili 
2015). The refined protein structures can be used for 
various downstream analyses.

Model evaluation

Large-scale model quality assessment (QA) tech-
niques are employed alongside model clustering to 
rank and select protein structural models. Various 
metrics, such as GDT-TS, GDT-HA, TM-score, Z-score, 
MolProbity (MP) score, QMEAN score, projected abso-
lute model quality Z-score, clash score, and root-mean-
square deviation (RMSD), are used to evaluate refine-
ment category predictions. These metrics assess model 
quality aspects, including total fold, interatomic contact 
distributions, and dihedral angle distributions.

The efficacy of automated protein structure pre-
diction methods for GFAP, S-100B, and UCH-L1 was 
assessed using servers such as GalaxyRefiner (Heo 
et al. 2013), ModRefiner (Xu and Zhang 2011), ProQ– 
Protein Quality Predictor (Benkert et al. 2011), ProSA-
web (Wiederstein and Sippl 2007), RAMACHANDRAN 
PLOT Server (Kleywegt and Jones 1996), QMEAN Serv-
er for Model Quality Estimation (Studer et al. 2020), 
TM-Score (Zhang and Skolnick 2004), and SAVES  
v6.0 (Hooft et al. 1996), a multiprogram that includes 
ERRAT (Colovos and Yeates 1993), VERIFY 3D (Lüthy 
et al. 1992), PROVE (Pontius et al. 1996), PROCHECK 

(Laskowski et al. 1993), and WHATCHECK (Hooft et al. 
1996). Additionally, TM-align (Zhang and Skolnick 2005) 
was used for structural alignment.

Functional motifs prediction

Motifs and fingerprints are instrumental in identi-
fying distant sequence relationships and facilitating 
protein–protein interactions (PPI). The PROSITE web 
server (De Castro et al. 2006; Sigrist et al. 2012), in-
cluding its enhanced version ScanProsite, was used 
to match regular expressions with a query sequence. 
The SMART (Letunic et al. 2021) web server stores se-
quence information from multiple sequence alignments 
and represents it using probabilistic models, such as 
Position-Specific Scoring Matrices (PSSMs), profiles, 
or HMMs. Several servers like MotifScan (Shao et al. 
2012), MotifFinder, InterPro (Mitchell et al. 2015), and 
Superfamily (Wilson et al. 2009), and visualization tools 
like CDvist (Adebali et al. 2015) aid in identifying and 
interpreting functional motifs within the protein.

Structural classification

The InterPro database (Mitchell et al. 2015) classi-
fies protein sequences into families and identifies sig-
nificant domains and conserved regions. InterProScan 
checks sequences against InterPro’s signatures, which 
are prediction models defining protein families, domains, 
or functional sites. Protein structural domains are clas-
sified in the SCOP database (Andreeva et al. 2014) 
based on their structures and amino acid sequences. Da-
tabases such as CATH (Sillitoe et al. 2021) and PIR (Wu 
et al. 2003) predict protein function based on structural 
features, while Superfamily (Wilson et al. 2009) provides 
annotation and classification of protein domains and fami-
lies. CATH (Sillitoe et al. 2021) recognizes domains in 
protein structures from the wwPDB and groups them into 
evolutionary superfamilies.

Pathway and systems biology analysis

To elucidate the functional relationships between 
GFAP, S-100B, and UCH-L1 in TBI, we conducted a struc-
tured bioinformatics analysis using the STRING database 
(version 11.5) (Szklarczyk et al. 2019). The proteins GFAP 
(ENSP00000253408), S-100B (ENSP00000291700), and 
UCH-L1 (ENSP00000284440) were queried using their 
Ensembl identifiers to construct a PPI network. Inter-
actions were predicted using STRING’s default parame-
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ters, including a medium confidence threshold (score  
≥ 0.4), and integrated evidence from co-expression, 
expe rimental datasets, and text mining. Functional en-
richment analysis was performed to identify associations 
with TBI-related pathways, such as neuroinflammation 
and ubiquitination, using Gene Ontology (GO), Reac-
tome, and WikiPathways annotations. The network topol-
ogy and interaction scores were visualized using coordi-
nates provided in the STRING output files, and all raw 
data were cross-validated for consistency.

Results and discussion

The UniProt Knowledgebase (UniProtKB) was used 
to retrieve the amino acid sequences of three biomark-
er proteins: GFAP (accession number NP_002046.1), 
UCH-L1 (accession number NP_004172.2), and S-100B 
(accession number NP_006263.1). These proteins 
were then subjected to in silico prediction and three-
dimensional structural analysis.

Prediction of the conserved region  
of GFAP, S100B and UCHL-1

BioEdit 7.2 software was used to assess essential 
features and predict conserved regions in UCH-L1, 
S-100B, and GFAP, identifying 5, 1, and 5 conserved 
segments, respectively. The analysis highlighted signi-

ficant similarity and crucial roles for these conserved 
regions, with minimum segment lengths of sixteen and 
maximum average entropy values of 0.0331 (Table 1).

Molecular evolutionary and phylogenetic analysis

The Maximum Likelihood approach, based on the 
JTT matrix-based model, along with the Neighbor-Joining 
and UPGMA methods, was used to infer evolutionary 
history (Tables 2, 3, and 4). For GFAP, two primary 
groups were identified. Group A comprised primates, 
including Homo sapiens, Pan troglodytes, and Gorilla go-
rilla, demonstrating strong evolutionary conservation. 
Group B consisted of species from diverse orders, sug-
gesting broader functional diversification (Figure 1). 
Similarly, the S-100B phylogenetic tree revealed two 
clusters. Group A included Homo sapiens, Macaca mu-
latta, and various rodents, indicating high functional 
conservation. Group B comprised a smaller but diverse 
set of species, highlighting the widespread distribution 
of S-100B across taxa (Figure 2). For UCH-L1, a highly 
conserved pattern was observed. Group A encompassed 
vertebrates such as Mesocricetus auratus, Peromyscus 
maniculatus bairdii, and Homo sapiens, underscoring 
its essential role in cellular processes. Notably, Homo sa-
piens clustered closely with Macaca fascicularis, reaffirm-
ing the evolutionary stability of UCH-L1 within primates. 

Table 1. Predicted conserved region of UCH-L1, S-100B and GFAP protein of traumatic brain injury using BioEdit

Proteinsa Regionb Positionc Consensusd Segment 
lengthe

Average 
entropy (Hx)f

UCH-L1 1 61–92 NFRKKQIEELKGQEVSPKVYFMKQTIGNSCGT 32 0.0095

2 108–123 FEDGSVLKQFLSETEK 16 0.0331

3 125–144 SPEDRAKCFEKNEAIQAAHD 20 0.0000

4 146–186 VAQEGQCRVDDKVNFHFILFNNVDGHLY
ELDGRMPFPVNHG

41 0.0074

5 196–223 DAAKVCREFTEREQGEVRFSAVALCKAA 28 0.0000

S-100B 1 22–38 EGDKHKLKKSELKELIN 17 0.0199

GFAP 1 66–130 GFKETRASERAEMMELNDRFASYIEKVRF
LEQQNKALAAELNQLRAKEPTKLADVYQAELRELRL

65 0.0094

2 157–175 RQKLQDETNLRLEAENNLA 19 0.0338

3 177–194 YRQEADEATLARLDLERK 18 0.0063

4 251–276 ASSNMHEAEEWYRSKFADLTDAAARN 26 0.0234
aProteins: The analyzed protein names. bRegion: The conserved sequence region identified within each protein. cPosition: The specific 
amino acid range where the conserved region is located. dConsensus: The consensus sequence of the conserved region is based on multiple 
sequence alignments. eSegment length: The number of amino acids in the conserved region. fAverage entropy (Hx): A measure of sequence 
variability within the conserved region, where lower entropy values indicate higher conservation



Ta
bl

e 
2.

 M
ax

im
um

 li
ke

lih
oo

d 
es

tim
at

e 
of

 s
ub

st
itu

tio
n 

m
at

ri
x 

of
 G

FA
P

 p
ro

te
in

 o
f t

ra
um

at
ic

 b
ra

in
 in

ju
ry

 u
si

ng
 M

E
G

A
 1

1

To
F

ro
m

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

A
–

0.
14

07
0.

12
30

0.
21

98
0.

06
04

0.
11

85
0.

34
17

0.
67

37
0.

02
62

0.
09

85
0.

14
64

0.
11

39
0.

05
70

0.
02

90
0.

51
31

1.
37

42
1.

38
96

0.
00

63
0.

02
34

1.
00

58

R
0.

21
17

–
0.

09
94

0.
04

11
0.

10
71

0.
64

28
0.

10
20

0.
52

62
0.

38
22

0.
06

51
0.

17
57

2.
01

24
0.

05
23

0.
01

37
0.

18
60

0.
35

40
0.

19
71

0.
09

34
0.

03
94

0.
05

91

N
0.

22
26

0.
11

95
–

1.
47

67
0.

03
30

0.
16

38
0.

18
55

0.
29

99
0.

48
02

0.
13

40
0.

06
49

0.
78

11
0.

04
02

0.
01

55
0.

03
19

1.
79

10
0.

71
41

0.
00

21
0.

11
75

0.
05

67

D
0.

32
95

0.
04

10
1.

22
34

–
0.

01
11

0.
11

10
2.

48
77

0.
49

26
0.

12
29

0.
03

16
0.

02
90

0.
08

71
0.

02
31

0.
00

68
0.

03
33

0.
20

83
0.

12
89

0.
00

43
0.

07
60

0.
10

84

C
0.

22
87

0.
26

97
0.

06
90

0.
02

80
–

0.
01

94
0.

01
73

0.
21

14
0.

08
63

0.
04

10
0.

07
77

0.
01

51
0.

04
96

0.
14

24
0.

03
24

0.
76

16
0.

14
24

0.
08

20
0.

35
38

0.
21

36

Q
0.

22
16

0.
79

92
0.

16
94

0.
13

85
0.

00
96

–
1.

09
44

0.
08

95
0.

67
66

0.
02

13
0.

33
46

0.
91

43
0.

05
54

0.
00

96
0.

42
09

0.
19

39
0.

15
88

0.
01

28
0.

04
26

0.
06

18

E
0.

42
52

0.
08

43
0.

12
76

2.
06

50
0.

00
57

0.
72

78
–

0.
43

23
0.

02
91

0.
03

05
0.

04
61

0.
53

43
0.

02
13

0.
00

92
0.

05
03

0.
11

06
0.

10
06

0.
00

85
0.

01
06

0.
16

02

G
0.

69
36

0.
36

00
0.

17
06

0.
33

83
0.

05
75

0.
04

92
0.

35
76

–
0.

02
40

0.
01

47
0.

03
28

0.
08

33
0.

01
58

0.
01

06
0.

05
45

0.
66

31
0.

09
62

0.
04

05
0.

00
88

0.
16

18

H
0.

08
76

0.
84

93
0.

88
73

0.
27

42
0.

07
62

1.
20

91
0.

07
81

0.
07

81
–

0.
04

95
0.

25
52

0.
16

19
0.

04
00

0.
09

52
0.

29
90

0.
26

28
0.

14
47

0.
00

95
0.

97
87

0.
04

19

I
0.

14
40

0.
06

33
0.

10
82

0.
03

08
0.

01
58

0.
01

67
0.

03
58

0.
02

08
0.

02
16

–
1.

10
24

0.
06

24
0.

58
62

0.
16

32
0.

02
58

0.
14

32
0.

77
43

0.
01

00
0.

05
08

3.
27

88

L
0.

12
36

0.
09

86
0.

03
03

0.
01

63
0.

01
73

0.
15

10
0.

03
12

0.
02

69
0.

06
44

0.
63

65
–

0.
04

52
0.

46
82

0.
52

54
0.

27
79

0.
20

96
0.

08
27

0.
03

94
0.

04
04

0.
60

62

K
0.

14
72

1.
72

83
0.

55
79

0.
07

51
0.

00
52

0.
63

15
0.

55
50

0.
10

45
0.

06
26

0.
05

52
0.

06
92

–
0.

07
58

0.
00

52
0.

05
67

0.
16

78
0.

29
30

0.
00

66
0.

01
47

0.
04

27

M
0.

18
72

0.
11

42
0.

07
30

0.
05

05
0.

04
30

0.
09

73
0.

05
61

0.
05

05
0.

03
93

1.
31

76
1.

82
29

0.
19

28
–

0.
09

17
0.

04
30

0.
10

11
0.

64
20

0.
01

50
0.

03
18

1.
04

62

F
0.

05
51

0.
01

73
0.

01
62

0.
00

87
0.

07
14

0.
00

97
0.

01
41

0.
01

95
0.

05
41

0.
21

19
1.

18
19

0.
00

76
0.

05
30

–
0.

03
89

0.
33

41
0.

04
22

0.
04

00
0.

91
92

0.
20

44

P
0.

78
14

0.
18

82
0.

02
69

0.
03

38
0.

01
30

0.
34

26
0.

06
16

0.
08

07
0.

13
62

0.
02

69
0.

50
13

0.
06

68
0.

01
99

0.
03

12
–

0.
98

69
0.

35
73

0.
00

52
0.

01
91

0.
07

28

S
1.

54
95

0.
26

52
1.

11
61

0.
15

67
0.

22
67

0.
11

69
0.

10
02

0.
72

63
0.

08
86

0.
11

05
0.

28
00

0.
14

64
0.

03
47

0.
19

84
0.

73
08

–
1.

45
00

0.
02

31
0.

10
53

0.
14

06

T
1.

82
67

0.
17

22
0.

51
88

0.
11

30
0.

04
94

0.
11

15
0.

10
63

0.
12

28
0.

05
69

0.
69

62
0.

12
88

0.
29

80
0.

25
68

0.
02

92
0.

30
84

1.
69

04
–

0.
00

60
0.

03
37

0.
39

38

W
0.

03
37

0.
33

38
0.

00
61

0.
01

53
0.

11
64

0.
03

68
0.

03
68

0.
21

13
0.

01
53

0.
03

68
0.

25
11

0.
02

76
0.

02
45

0.
11

33
0.

01
84

0.
11

03
0.

02
45

–
0.

12
56

0.
08

27

Y
0.

05
56

0.
06

24
0.

15
46

0.
12

07
0.

22
24

0.
05

42
0.

02
03

0.
02

03
0.

69
69

0.
08

27
0.

11
39

0.
02

71
0.

02
31

1.
15

25
0.

02
98

0.
22

24
0.

06
10

0.
05

56
–

0.
05

69

V
1.

16
48

0.
04

55
0.

03
63

0.
08

38
0.

06
53

0.
03

83
0.

14
91

0.
18

20
0.

01
45

2.
59

74
0.

83
17

0.
03

83
0.

36
87

0.
12

47
0.

05
54

0.
14

44
0.

34
69

0.
01

78
0.

02
77

–

E
ac

h 
en

tr
y 

is
 t

he
 p

ro
ba

bi
lit

y 
of

 s
ub

st
itu

tio
n 

(r
) 

fr
om

 o
ne

 a
m

in
o 

ac
id

 (
ro

w
) 

to
 a

no
th

er
 (

co
lu

m
n)

. S
ub

st
itu

tio
n 

pa
tt

er
ns

 a
nd

 r
at

es
 w

er
e 

es
tim

at
ed

 u
nd

er
 t

he
 J

on
es

-T
ay

lo
r-T

ho
rn

to
n 

m
od

el
 (

Jo
ne

s 
et

 a
l. 

19
92

).
 R

el
at

iv
e 

va
lu

es
 o

f i
ns

ta
nt

an
eo

us
 r

 s
ho

ul
d 

be
 c

on
si

de
re

d 
w

he
n 

ev
al

ua
tin

g 
th

em
. F

or
 s

im
pl

ic
it

y,
 t

he
 s

um
 o

f r
 v

al
ue

s 
is

 m
ad

e 
eq

ua
l t

o 
10

0.
 T

he
 a

m
in

o 
ac

id
 fr

eq
ue

nc
ie

s 
ar

e 
7.

69
%

 (
A

),
 5

.1
1%

 (
R

),
 

4.
25

%
 (N

),
 5

.1
3%

 (D
),

 2
.0

3%
 (C

),
 4

.1
1%

 (Q
),

 6
.1

8%
 (E

),
 7

.4
7%

 (G
),

 2
.3

0%
 (H

),
 5

.2
6%

 (I
),

 9
.1

1%
 (L

),
 5

.9
5%

 (K
),

 2
.3

4%
 (M

),
 4

.0
5%

 (F
),

 5
.0

5%
 (P

),
 6

.8
2%

 (S
),

 5
.8

5%
 (T

),
 1

.4
3%

 (W
),

 3
.2

3%
 (Y

),
 a

nd
 6

.6
4%

 (V
).

 
Fo

r 
es

tim
at

in
g 

M
L 

va
lu

es
, a

 tr
ee

 t
op

ol
og

y 
w

as
 a

ut
om

at
ic

al
ly

 c
om

pu
te

d.
 T

he
 m

ax
im

um
 L

og
-li

ke
lih

oo
d 

fo
r 

th
is

 c
om

pu
ta

tio
n 

w
as

 –
24

93
.1

54
. T

hi
s 

an
al

ys
is

 in
vo

lv
ed

 4
2 

am
in

o 
ac

id
 s

eq
ue

nc
es

. T
he

re
 w

as
a 

to
ta

l o
f 4

36
 p

os
iti

on
s 

in
 th

e 
fin

al
 d

at
as

et
. E

vo
lu

tio
na

ry
 a

na
ly

se
s 

w
er

e 
co

nd
uc

te
d 

in
 M

E
G

A
11

 (
Ta

m
ur

a 
et

 a
l. 

20
21

)



Ta
bl

e 
3.

 M
ax

im
um

 li
ke

lih
oo

d 
es

tim
at

e 
of

 s
ub

st
itu

tio
n 

m
at

ri
x 

of
 S

-1
00

B
 p

ro
te

in
 o

f t
ra

um
at

ic
 b

ra
in

 in
ju

ry
 u

si
ng

 M
E

G
A

 1
1

To
F

ro
m

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

A
–

0.
14

07
0.

12
30

0.
21

98
0.

06
04

0.
11

85
0.

34
17

0.
67

37
0.

02
62

0.
09

85
0.

14
64

0.
11

39
0.

05
70

0.
02

90
0.

51
31

1.
37

42
1.

38
96

0.
00

63
0.

02
34

1.
00

58

R
0.

21
17

–
0.

09
94

0.
04

11
0.

10
71

0.
64

28
0.

10
20

0.
52

62
0.

38
22

0.
06

51
0.

17
57

2.
01

24
0.

05
23

0.
01

37
0.

18
60

0.
35

40
0.

19
71

0.
09

34
0.

03
94

0.
05

91

N
0.

22
26

0.
11

95
–

1.
47

67
0.

03
30

0.
16

38
0.

18
55

0.
29

99
0.

48
02

0.
13

40
0.

06
49

0.
78

11
0.

04
02

0.
01

55
0.

03
19

1.
79

10
0.

71
41

0.
00

21
0.

11
75

0.
05

67

D
0.

32
95

0.
04

10
1.

22
34

–
0.

01
11

0.
11

10
2.

48
77

0.
49

26
0.

12
29

0.
03

16
0.

02
90

0.
08

71
0.

02
31

0.
00

68
0.

03
33

0.
20

83
0.

12
89

0.
00

43
0.

07
60

0.
10

84

C
0.

22
87

0.
26

97
0.

06
90

0.
02

80
–

0.
01

94
0.

01
73

0.
21

14
0.

08
63

0.
04

10
0.

07
77

0.
01

51
0.

04
96

0.
14

24
0.

03
24

0.
76

16
0.

14
24

0.
08

20
0.

35
38

0.
21

36

Q
0.

22
16

0.
79

92
0.

16
94

0.
13

85
0.

00
96

–
1.

09
44

0.
08

95
0.

67
66

0.
02

13
0.

33
46

0.
91

43
0.

05
54

0.
00

96
0.

42
09

0.
19

39
0.

15
88

0.
01

28
0.

04
26

0.
06

18

E
0.

42
52

0.
08

43
0.

12
76

2.
06

50
0.

00
57

0.
72

78
–

0.
43

23
0.

02
91

0.
03

05
0.

04
61

0.
53

43
0.

02
13

0.
00

92
0.

05
03

0.
11

06
0.

10
06

0.
00

85
0.

01
06

0.
16

02

G
0.

69
36

0.
36

00
0.

17
06

0.
33

83
0.

05
75

0.
04

92
0.

35
76

–
0.

02
40

0.
01

47
0.

03
28

0.
08

33
0.

01
58

0.
01

06
0.

05
45

0.
66

31
0.

09
62

0.
04

05
0.

00
88

0.
16

18

H
0.

08
76

0.
84

93
0.

88
73

0.
27

42
0.

07
62

1.
20

91
0.

07
81

0.
07

81
–

0.
04

95
0.

25
52

0.
16

19
0.

04
00

0.
09

52
0.

29
90

0.
26

28
0.

14
47

0.
00

95
0.

97
87

0.
04

19

I
0.

14
40

0.
06

33
0.

10
82

0.
03

08
0.

01
58

0.
01

67
0.

03
58

0.
02

08
0.

02
16

–
1.

10
24

0.
06

24
0.

58
62

0.
16

32
0.

02
58

0.
14

32
0.

77
43

0.
01

00
0.

05
08

3.
27

88

L
0.

12
36

0.
09

86
0.

03
03

0.
01

63
0.

01
73

0.
15

10
0.

03
12

0.
02

69
0.

06
44

0.
63

65
–

0.
04

52
0.

46
82

0.
52

54
0.

27
79

0.
20

96
0.

08
27

0.
03

94
0.

04
04

0.
60

62

K
0.

14
72

1.
72

83
0.

55
79

0.
07

51
0.

00
52

0.
63

15
0.

55
50

0.
10

45
0.

06
26

0.
05

52
0.

06
92

–
0.

07
58

0.
00

52
0.

05
67

0.
16

78
0.

29
30

0.
00

66
0.

01
47

0.
04

27

M
0.

18
72

0.
11

42
0.

07
30

0.
05

05
0.

04
30

0.
09

73
0.

05
61

0.
05

05
0.

03
93

1.
31

76
1.

82
29

0.
19

28
–

0.
09

17
0.

04
30

0.
10

11
0.

64
20

0.
01

50
0.

03
18

1.
04

62

F
0.

05
51

0.
01

73
0.

01
62

0.
00

87
0.

07
14

0.
00

97
0.

01
41

0.
01

95
0.

05
41

0.
21

19
1.

18
19

0.
00

76
0.

05
30

–
0.

03
89

0.
33

41
0.

04
22

0.
04

00
0.

91
92

0.
20

44

P
0.

78
14

0.
18

82
0.

02
69

0.
03

38
0.

01
30

0.
34

26
0.

06
16

0.
08

07
0.

13
62

0.
02

69
0.

50
13

0.
06

68
0.

01
99

0.
03

12
–

0.
98

69
0.

35
73

0.
00

52
0.

01
91

0.
07

28

S
1.

54
95

0.
26

52
1.

11
61

0.
15

67
0.

22
67

0.
11

69
0.

10
02

0.
72

63
0.

08
86

0.
11

05
0.

28
00

0.
14

64
0.

03
47

0.
19

84
0.

73
08

–
1.

45
00

0.
02

31
0.

10
53

0.
14

06

T
1.

82
67

0.
17

22
0.

51
88

0.
11

30
0.

04
94

0.
11

15
0.

10
63

0.
12

28
0.

05
69

0.
69

62
0.

12
88

0.
29

80
0.

25
68

0.
02

92
0.

30
84

1.
69

04
–

0.
00

60
0.

03
37

0.
39

38

W
0.

03
37

0.
33

38
0.

00
61

0.
01

53
0.

11
64

0.
03

68
0.

03
68

0.
21

13
0.

01
53

0.
03

68
0.

25
11

0.
02

76
0.

02
45

0.
11

33
0.

01
84

0.
11

03
0.

02
45

–
0.

12
56

0.
08

27

Y
0.

05
56

0.
06

24
0.

15
46

0.
12

07
0.

22
24

0.
05

42
0.

02
03

0.
02

03
0.

69
69

0.
08

27
0.

11
39

0.
02

71
0.

02
31

1.
15

25
0.

02
98

0.
22

24
0.

06
10

0.
05

56
–

0.
05

69

V
1.

16
48

0.
04

55
0.

03
63

0.
08

38
0.

06
53

0.
03

83
0.

14
91

0.
18

20
0.

01
45

2.
59

74
0.

83
17

0.
03

83
0.

36
87

0.
12

47
0.

05
54

0.
14

44
0.

34
69

0.
01

78
0.

02
77

–

E
ac

h 
en

tr
y 

is
 t

he
 p

ro
ba

bi
lit

y 
of

 s
ub

st
itu

tio
n 

(r
) 

fr
om

 o
ne

 a
m

in
o 

ac
id

 (
ro

w
) 

to
 a

no
th

er
 (

co
lu

m
n)

. S
ub

st
itu

tio
n 

pa
tt

er
ns

 a
nd

 r
at

es
 w

er
e 

es
tim

at
ed

 u
nd

er
 t

he
 J

on
es

-T
ay

lo
r-T

ho
rn

to
n 

m
od

el
 (

Jo
ne

s 
et

 a
l. 

19
92

).
 R

el
at

iv
e 

va
lu

es
 o

f i
ns

ta
nt

an
eo

us
 r

 s
ho

ul
d 

be
 c

on
si

de
re

d 
w

he
n 

ev
al

ua
tin

g 
th

em
. F

or
 s

im
pl

ic
it

y,
 th

e 
su

m
 o

f r
 v

al
ue

s 
is

 m
ad

e 
eq

ua
l t

o 
10

0.
 T

he
 a

m
in

o 
ac

id
 fr

eq
ue

nc
ie

s 
ar

e 
7.

69
%

 (A
),

 5
.1

1%
 (R

),
 4

.2
5%

 
(N

),
 5

.1
3%

 (
D

),
 2

.0
3%

 (
C

),
 4

.1
1%

 (
Q

),
 6

.1
8%

 (
E

),
 7

.4
7%

 (
G

),
 2

.3
0%

 (
H

),
 5

.2
6%

 (
I)

, 9
.1

1%
 (

L)
, 5

.9
5%

 (
K

),
 2

.3
4%

 (
M

),
 4

.0
5%

 (
F

),
 5

.0
5%

 (
P

),
 6

.8
2%

 (
S)

, 5
.8

5%
 (

T
),

 1
.4

3%
 (

W
),

 3
.2

3%
 (

Y)
, a

nd
 6

.6
4%

 (
V

).
 F

or
 

es
tim

at
in

g 
M

L 
va

lu
es

, a
 tr

ee
 t

op
ol

og
y 

w
as

 a
ut

om
at

ic
al

ly
 c

om
pu

te
d.

 T
he

 m
ax

im
um

 lo
g-

lik
el

ih
oo

d 
fo

r 
th

is
 c

om
pu

ta
tio

n 
w

as
 –

51
6.

11
0.

 T
hi

s 
an

al
ys

is
 in

vo
lv

ed
 4

2 
am

in
o 

ac
id

 s
eq

ue
nc

es
. T

he
re

 w
as

 a
 to

ta
l 

of
 4

36
 p

os
iti

on
s 

in
 th

e 
fin

al
 d

at
as

et
. E

vo
lu

tio
na

ry
 a

na
ly

se
s 

w
er

e 
co

nd
uc

te
d 

in
 M

E
G

A
11

 (
Ta

m
ur

a 
et

 a
l. 

20
21

)



Ta
bl

e 
4.

 M
ax

im
um

 li
ke

lih
oo

d 
es

tim
at

e 
of

 s
ub

st
itu

tio
n 

m
at

ri
x 

of
 U

C
H

-L
1 

pr
ot

ei
n 

of
 tr

au
m

at
ic

 b
ra

in
 in

ju
ry

 u
si

ng
 M

E
G

A
 1

1

To
F

ro
m

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

A
–

0.
14

07
0.

12
30

0.
21

98
0.

06
04

0.
11

85
0.

34
17

0.
67

37
0.

02
62

0.
09

85
0.

14
64

0.
11

39
0.

05
70

0.
02

90
0.

51
31

1.
37

42
1.

38
96

0.
00

63
0.

02
34

1.
00

58

R
0.

21
17

–
0.

09
94

0.
04

11
0.

10
71

0.
64

28
0.

10
20

0.
52

62
0.

38
22

0.
06

51
0.

17
57

2.
01

24
0.

05
23

0.
01

37
0.

18
60

0.
35

40
0.

19
71

0.
09

34
0.

03
94

0.
05

91

N
0.

22
26

0.
11

95
–

1.
47

67
0.

03
30

0.
16

38
0.

18
55

0.
29

99
0.

48
02

0.
13

40
0.

06
49

0.
78

11
0.

04
02

0.
01

55
0.

03
19

1.
79

10
0.

71
41

0.
00

21
0.

11
75

0.
05

67

D
0.

32
95

0.
04

10
1.

22
34

–
0.

01
11

0.
11

10
2.

48
77

0.
49

26
0.

12
29

0.
03

16
0.

02
90

0.
08

71
0.

02
31

0.
00

68
0.

03
33

0.
20

83
0.

12
89

0.
00

43
0.

07
60

0.
10

84

C
0.

22
87

0.
26

97
0.

06
90

0.
02

80
–

0.
01

94
0.

01
73

0.
21

14
0.

08
63

0.
04

10
0.

07
77

0.
01

51
0.

04
96

0.
14

24
0.

03
24

0.
76

16
0.

14
24

0.
08

20
0.

35
38

0.
21

36

Q
0.

22
16

0.
79

92
0.

16
94

0.
13

85
0.

00
96

–
1.

09
44

0.
08

95
0.

67
66

0.
02

13
0.

33
46

0.
91

43
0.

05
54

0.
00

96
0.

42
09

0.
19

39
0.

15
88

0.
01

28
0.

04
26

0.
06

18

E
0.

42
52

0.
08

43
0.

12
76

2.
06

50
0.

00
57

0.
72

78
–

0.
43

23
0.

02
91

0.
03

05
0.

04
61

0.
53

43
0.

02
13

0.
00

92
0.

05
03

0.
11

06
0.

10
06

0.
00

85
0.

01
06

0.
16

02

G
0.

69
36

0.
36

00
0.

17
06

0.
33

83
0.

05
75

0.
04

92
0.

35
76

–
0.

02
40

0.
01

47
0.

03
28

0.
08

33
0.

01
58

0.
01

06
0.

05
45

0.
66

31
0.

09
62

0.
04

05
0.

00
88

0.
16

18

H
0.

08
76

0.
84

93
0.

88
73

0.
27

42
0.

07
62

1.
20

91
0.

07
81

0.
07

81
–

0.
04

95
0.

25
52

0.
16

19
0.

04
00

0.
09

52
0.

29
90

0.
26

28
0.

14
47

0.
00

95
0.

97
87

0.
04

19

I
0.

14
40

0.
06

33
0.

10
82

0.
03

08
0.

01
58

0.
01

67
0.

03
58

0.
02

08
0.

02
16

–
1.

10
24

0.
06

24
0.

58
62

0.
16

32
0.

02
58

0.
14

32
0.

77
43

0.
01

00
0.

05
08

3.
27

88

L
0.

12
36

0.
09

86
0.

03
03

0.
01

63
0.

01
73

0.
15

10
0.

03
12

0.
02

69
0.

06
44

0.
63

65
–

0.
04

52
0.

46
82

0.
52

54
0.

27
79

0.
20

96
0.

08
27

0.
03

94
0.

04
04

0.
60

62

K
0.

14
72

1.
72

83
0.

55
79

0.
07

51
0.

00
52

0.
63

15
0.

55
50

0.
10

45
0.

06
26

0.
05

52
0.

06
92

–
0.

07
58

0.
00

52
0.

05
67

0.
16

78
0.

29
30

0.
00

66
0.

01
47

0.
04

27

M
0.

18
72

0.
11

42
0.

07
30

0.
05

05
0.

04
30

0.
09

73
0.

05
61

0.
05

05
0.

03
93

1.
31

76
1.

82
29

0.
19

28
–

0.
09

17
0.

04
30

0.
10

11
0.

64
20

0.
01

50
0.

03
18

1.
04

62

F
0.

05
51

0.
01

73
0.

01
62

0.
00

87
0.

07
14

0.
00

97
0.

01
41

0.
01

95
0.

05
41

0.
21

19
1.

18
19

0.
00

76
0.

05
30

–
0.

03
89

0.
33

41
0.

04
22

0.
04

00
0.

91
92

0.
20

44

P
0.

78
14

0.
18

82
0.

02
69

0.
03

38
0.

01
30

0.
34

26
0.

06
16

0.
08

07
0.

13
62

0.
02

69
0.

50
13

0.
06

68
0.

01
99

0.
03

12
–

0.
98

69
0.

35
73

0.
00

52
0.

01
91

0.
07

28

S
1.

54
95

0.
26

52
1.

11
61

0.
15

67
0.

22
67

0.
11

69
0.

10
02

0.
72

63
0.

08
86

0.
11

05
0.

28
00

0.
14

64
0.

03
47

0.
19

84
0.

73
08

–
1.

45
00

0.
02

31
0.

10
53

0.
14

06

T
1.

82
67

0.
17

22
0.

51
88

0.
11

30
0.

04
94

0.
11

15
0.

10
63

0.
12

28
0.

05
69

0.
69

62
0.

12
88

0.
29

80
0.

25
68

0.
02

92
0.

30
84

1.
69

04
–

0.
00

60
0.

03
37

0.
39

38

W
0.

03
37

0.
33

38
0.

00
61

0.
01

53
0.

11
64

0.
03

68
0.

03
68

0.
21

13
0.

01
53

0.
03

68
0.

25
11

0.
02

76
0.

02
45

0.
11

33
0.

01
84

0.
11

03
0.

02
45

–
0.

12
56

0.
08

27

Y
0.

05
56

0.
06

24
0.

15
46

0.
12

07
0.

22
24

0.
05

42
0.

02
03

0.
02

03
0.

69
69

0.
08

27
0.

11
39

0.
02

71
0.

02
31

1.
15

25
0.

02
98

0.
22

24
0.

06
10

0.
05

56
–

0.
05

69

V
1.

16
48

0.
04

55
0.

03
63

0.
08

38
0.

06
53

0.
03

83
0.

14
91

0.
18

20
0.

01
45

2.
59

74
0.

83
17

0.
03

83
0.

36
87

0.
12

47
0.

05
54

0.
14

44
0.

34
69

0.
01

78
0.

02
77

–

E
ac

h 
en

tr
y 

is
 th

e 
pr

ob
ab

ili
ty

 o
f s

ub
st

itu
tio

n 
(r

) f
ro

m
 o

ne
 a

m
in

o 
ac

id
 (r

ow
) t

o 
an

ot
he

r 
(c

ol
um

n)
. S

ub
st

itu
tio

n 
pa

tt
er

n 
an

d 
ra

te
s 

w
er

e 
es

tim
at

ed
 u

nd
er

 th
e 

Jo
ne

s-T
ay

lo
r-T

ho
rn

to
n 

m
od

el
 (J

on
es

 e
t a

l. 
19

92
).

 
R

el
at

iv
e 

va
lu

es
 o

f i
ns

ta
nt

an
eo

us
 r

 s
ho

ul
d 

be
 c

on
si

de
re

d 
w

he
n 

ev
al

ua
tin

g 
th

em
. F

or
 s

im
pl

ic
it

y,
 t

he
 s

um
 o

f r
 v

al
ue

s 
is

 m
ad

e 
eq

ua
l t

o 
10

0.
 T

he
 a

m
in

o 
ac

id
 f

re
qu

en
ci

es
 a

re
 7

.6
9%

 (
A

),
 5

.1
1%

 (
R

),
 4

.2
5%

 
(N

),
 5

.1
3%

 (
D

),
 2

.0
3%

 (
C

),
 4

.1
1%

 (
Q

),
 6

.1
8%

 (
E

),
 7

.4
7%

 (
G

),
 2

.3
0%

 (
H

),
 5

.2
6%

 (
I)

, 9
.1

1%
 (

L)
, 5

.9
5%

 (
K

),
 2

.3
4%

 (
M

),
 4

.0
5%

 (
F

),
 5

.0
5%

 (
P

),
 6

.8
2%

 (
S)

, 5
.8

5%
 (

T
),

 1
.4

3%
 (

W
),

 3
.2

3%
 (

Y)
, a

nd
 6

.6
4%

 (
V

).
 F

or
 

es
tim

at
in

g 
M

L 
va

lu
es

, a
 tr

ee
 to

po
lo

gy
 w

as
 a

ut
om

at
ic

al
ly

 c
om

pu
te

d.
 T

he
 m

ax
im

um
 lo

g-
lik

el
ih

oo
d 

fo
r 

th
is

 c
om

pu
ta

tio
n 

w
as

 –
11

95
.0

37
. T

hi
s 

an
al

ys
is

 in
vo

lv
ed

 4
2 

am
in

o 
ac

id
 s

eq
ue

nc
es

. T
he

re
 w

as
 a

 to
ta

l 
of

 2
23

 p
os

iti
on

s 
in

 th
e 

fin
al

 d
at

as
et

. E
vo

lu
tio

na
ry

 a
na

ly
se

s 
w

er
e 

co
nd

uc
te

d 
in

 M
E

G
A

11
 (

Ta
m

ur
a 

et
 a

l. 
20

21
).

 C
lic

k 
or

 t
ap

 h
er

e 
to

 e
nt

er
 te

xt



9Integration of proteomics and bioinformatics in traumatic brain injury biomarker discovery

Group B, though smaller, demonstrated the presence 
of UCH-L1 across diverse species, reinforcing its funda-
mental biological importance (Figure 3).

Domain separation

The CD-Search results provide domain multiple se-
quence alignments by integrating user queries and an-
notating protein domains on these sequences. For the 
GFAP protein, the NCBI Conserved Domain Search 
identified two domains: one with accession number 
pfam00038, spanning intervals 68–376 with  an E-value 

of 1.12e–127, and another with accession number 
pfam04732, covering intervals 4–66 with  an E-value of 
2.51e–08. ThreaDom analysis also revealed two domains 
for GFAP, spanning 1–171 and 172–345, with a cutoff of 
0.56. Similarly, the S-100B protein showed one domain via 
NCBI CDD, with accession number cd05027, an interval 
of 2–89, and an E-value of  1.68e–47. ThreaDom analysis 
identified a single domain in GFAP with the same cutoff 
of 0.56. For the UCH-L1 protein, NCBI CDD revealed 
a single domain with accession number cd09616, span-
ning intervals 5–219 with an E-value of 3.16e–127. Threa-

Figure 1. Molecular phylogenetic analysis of the GFAP protein using the maximum likelihood method. The evolutionary history 
was inferred using the maximum likelihood method and the JTT matrix-based model (Jones et al. 1992). The tree with the highest 
log likelihood (–2493.15) is shown. Initial trees for the heuristic search were obtained automatically by applying the Neighbor-
Joining and BioNJ algorithms to a matrix of pairwise distances estimated using the JTT model, followed by selecting the topology 

with the highest log likelihood value. The final dataset included 436 positions 

Group A

Group B
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Dom also identified one domain in GFAP, using the same 
cutoff of 0.56 (Table 5 and Figure 4).

Secondary structure and solvent accessibility prediction

The GFAP protein’s secondary structure is predomi-
nantly alpha-helical, accounting for 65% (281 residues), 
with a minor presence of beta strands (6%, 25 residues) 
and coils (28%, 120 residues), achieving an overall pre-
diction confidence of 86%. Similarly, the S-100B protein 
is helix-dominant, with 67% (63 residues) forming alpha 
helices, no beta strands, and 33% (19 residues) struc-
tured as coils, with an 87.5% confidence level. In con-
trast, UCH-L1 exhibits a more balanced composition, 
with alpha helices and coils each constituting 41% (91 
and 92 residues, respectively), while beta strands make 
up 18% (40 residues), with an 80.4% confidence level.

Solvent accessibility analyses indicate that GFAP 
and S-100B are primarily buried, with solvent exposure 
levels of 63.89% and 66.30%, respectively, while UCH-L1 
has a more exposed surface, with 42.60% solvent-acces-

sible regions compared to 57.40% buried regions. These 
structural characteristics provide valuable insights into 
the proteins’ solvent interactions and potential func-
tional dynamics (Table 6). This concise overview is 
suitable for inclusion in a review article, offering a clear 
snapshot of the proteins’ structural profiles.

Three-dimensional (3-D) structure prediction

Initial models were generated, developed, and re-
viewed using several servers aligned with CASP15 pro-
tocols to create the 3D model, and the highest-quality 
model was selected.

Construction of an initial model  
using target-template alignment

GalaxyWEB, Swiss-Model, and LOMETS were used 
for aligned regions, while I-TASSER, Robetta, Phyre2, 
and AlphaFold targeted low-similarity regions to con-
struct structural models for unaligned regions. AlphaFold 
demonstrated superior performance, particularly in mod-

Figure 2. Molecular phylogenetic analysis of the S-100B protein using the maximum likelihood method. The evolutionary 
history was inferred using the maximum likelihood method and the JTT matrix-based model (Jones et al. 1992). The tree with 
the highest log likelihood (–517.32) is shown. Initial trees for the heuristic search were obtained automatically by applying 
the Neighbor-Joining and BioNJ algorithms to a matrix of pairwise distances estimated using the JTT model, followed by

 selecting the topology with the highest log likelihood value. The final dataset included 92 positions

Group A

Group B
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Figure 3. Molecular phylogenetic analysis of the UCH-L1 protein using the maximum likelihood method. The evolutionary 
history was inferred using the maximum likelihood method and the JTT matrix-based model (Jones et al. 1992). The tree with 
the highest log likelihood (–1186.09) is shown. Initial trees for the heuristic search were obtained automatically by applying 
the Neighbor-Joining and BioNJ algorithms to a matrix of pairwise distances estimated using the JTT model, followed by selecting

the topology with the highest log likelihood value. The final dataset included 223 positions

Table 5. Domain assignment of GFAP, S-100B and UCH-L1 protein using CD-Search (NCBI server)

Proteinsa Nameb Accessionc Descriptiond Intervale E-valuef Bitscoreg Superfamilyh

GFAP Filament pfam00038 Intermediate filament
 protein

68–376 1.12e–127 371.555 cl25641

Filament_head pfam04732 Intermediate filament head 
(DNA binding) region: 
This family represents 
the N-terminal head...

4–66 2.51e–08 50.8519 cl04711

S-100B S-100B cd05027 S-100B: The S-100B domain 
is found in proteins similar to 
S100B. S100B is a calcium-

binding protein

2–89 1.68e–47 146.155 cl08302

UCH-L1 Peptidase_C12_
UCH_L1_L3

cd09616 Cysteine peptidase C12 
containing ubiquitin 

carboxyl-terminal hydrolase 
(UCH) families L1 and...

5–219 3.16e–127 321.122 cl08306

aProteins: The analyzed protein names. bName: The specific domain or structural component of the protein. cAccession: The unique 
identifier assigned to the protein family or domain in the database. dDescription: A brief functional or structural description of the protein or 
domain. eInterval: The residue range within the protein where the domain is located. fE-value: The statistical significance of the match, with 
lower values indicating higher confidence. gBitscore: A sequence similarity measure where higher scores indicate more decisive matches. 
hSuperfamily: The broader classification of structurally and functionally related proteins

Group A

Group B
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protein, the C-scores were 0.06 for the main protein,  
–0.5 for Domain 1, and –0.25 for Domain 2, while Alpha-
Fold achieved a QMEAN score of 0.79 ± 0.09, confirming 
its reliability. For the UCH-L1 protein, I-TASSER deve-
loped five models, with a C-score of 1.51 for Domain 1.  
In contrast, AlphaFold provided an RMSD value of 3.36 Å 
after refinement, suggesting enhanced accuracy in sec-
ondary structure alignment.

Each query sequence was given five models by 
Galaxy WEB, which also selected templates for model-
ing by rescoring HHsearch results. While Phyre2 built 
3D models using advanced distant homology detection 
techniques, SWISS-MODEL generated multiple models 
with QMEAN scores of 0.86 ± 0.06, 0.27 ± 0.12, and 0.69  
± 0.07 for GFAP; 0.81 ± 0.06, 0.80 ± 0.09, and 0.81 ± 0.11 
for S-100B; and 0.86 ± 0.06 and 0.87 ± 0.06 for UCH-L1. 
Among these, AlphaFold consistently ranked as one 
of the top-performing predictors, producing models with 
high structural fidelity across all three biomarkers. 

Reduced-level structure assembly and refinement simulations

The second stage of structure prediction involved re-
fining the S-100B protein. In terms of hydrogen bonds, 
backbone structure, and side-chain positioning, the re-
sults from the GalaxyWEB, ModRefiner, and 3Drefine 
servers successfully optimized the basic starting models, 
bringing them closer to their native state. Refinement 
improved the physical quality of global and local struc-
tures compared to the original model generated by 
selected servers, such as I-TASSER for the target do-
mains. This was achieved by lowering the RMSD and 
clash scores while increasing the TM-score, enhancing 
structural accuracy and stability.

Model evaluation and selection

The best 3D model of the correct fold was chosen 
through model evaluation from all generated conforma-
tions, selecting those most closely resembling the na-

Figure 4. Domain separation of (A) the GFAP protein (T11613), 
(B) the S-100B protein (T11612), and (C) the UCH-L1 protein

(T11624) using the ThreaDom server

Table 6. Predicted secondary structure of proteins using different servers

Proteina
2ry structureb

Exposedc Intermediated Buriede

Alpha helix Beta sheet Others (Coil-Turn-Loop)

GFAP 65% 6.2% 28.7% 36.11% – 63.89%

S-100B 67.39% 0% 32.61% 33.70% – 66.30%

UCH-L1 40.81% 17.94% 41.26% 42.60% – 57.40%
aProtein: The analyzed protein name. b 2ry structure (secondary structure): The predicted composition of the protein secondary structure 
elements. cExposed: The percentage of residues that are solvent-exposed on the protein surface. dIntermediate: The percentage of residues
partially buried in the protein structure. eBuried: The percentage of residues fully buried within the protein core
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C

eling full-length structures with high confidence scores, 
making it a critical tool for assessing structural integrity.

For the GFAP protein, I-TASSER generated five 
models, with a C-score of –3.23 for the main protein, 
–3.24 for Domain 1, and –1.15 for Domain 2. In contrast, 
AlphaFold provided a QMEAN Z-score of 0.89, indicat-
ing a highly accurate model. In the case of the S-100B 
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tive structure. Various evaluation metrics were used to 
assess structural accuracy and stability, including Swiss-
Model Works, QMEAN Server, TM-align, TM-score,  
Z-score, RMSD, Clash-score, and PROCHECK. Alpha-
Fold and I-TASSER were identified as the best-perform-
ing approaches, consistently ranking among the top 
predictors in CASP11, CASP12, CASP13, CASP14, and 
CASP15 assessments.

The I-TASSER server produced five full-length 
models with high C-scores, an estimated TM-score of  
0.92 ± 0.06, and an RMSD of 2.7 ± 2.0 Å, confirming 
the accuracy of its models. However, AlphaFold deli-
vered the best structural predictions for GFAP, S-100B, 
and UCH-L1, with TM-scores exceeding 0.99, demon-
strating near-native accuracy. The selected AlphaFold 
models outperformed other methods in terms of RMSD 
reduction and global alignment accuracy, making them 
the optimal choice for further structural and functional 
interpretation.

The LOMETS server’s best prediction of the three-
dimensional structures of GFAP, S-100B, and UCH-L1 
(Table 10) further validated AlphaFold’s superiority. 
The esti mated scores for the projected three-dimension-
al structures using AlphaFold consistently ranked higher 
than experimentally determined structures in terms of 
RMSD, TM-score, C-score, QMEAN Z-score, Mol Probity 
score, and Clash score (Tables 7–10).

Motifs prediction 
Motif analysis

Utilizing MotifFinder and MotifScan, we analyzed 
motifs in GFAP, S-100B, and UCH-L1 proteins to uncover 
sequence patterns associated with specific functions. 
These tools, employing distinct algorithms, provide 
a comprehensive view of conserved motifs within these 
proteins. Motif analysis of GFAP, S-100B, and UCH-L1 
using MotifFinder and MotifScan servers revealed criti-
cal insights. GFAP’s motifs, including Filament and Fila-
ment_head, serve as structural foundations for astro-
cytic integrity, while unknown motifs suggest potential 
novel functions. S-100B’s calcium-binding motifs, such 
as S_100 and EF-hand, are implicated in cellular regu-
latory mechanisms. UCH-L1’s peptidase_C12 motif 
is essential for ubiquitin-mediated protein turnover 
(Figure 5). These findings, presented in Tables 11 and 
12, highlight the potential of these proteins as biomark-
ers in TBI pathophysiology and recovery processes.

Post-translational modification site prediction  
using PROSITE server

Different signatures were identified across various 
locations within the proteins using the PROSITE data-
base. In GFAP, these include the Intermediate Fila-
ment (IF) rod domain profile site spanning positions 
69–377 and the IF rod domain signature site at 363–371 
(Table 12). In S-100B, the EF-hand calcium-binding do-
main profile site was detected at positions 49–84, along 
with the S-100/ICaBP-type calcium-binding protein sig-
nature site at 57–78 and another EF-hand calcium-bind-
ing domain site at 62–74. For UCH-L1, the ubiquitin 
carboxyl-terminal hydrolase family 1 cysteine active-site 
was identified between positions 84–100 (Table 12).

Identification, annotation, and analysis  
of domain architectures

The SMART server is an invaluable resource for ex-
ploring protein domain architecture and genetic modifi-
cation. Our study, complemented by PredictProtein and 
SCOP data, analyzed the GFAP, S-100B, and UCH-L1 
proteins, identifying disordered regions critical to their 
functionality.

GFAP is classified under SCOP’s superfamily of in-
termediate filament proteins, characterized by a coiled-
coil region (Family: Intermediate filament protein, 
coiled-coil region). It shares a Fold known for its left-
handed parallel coiled-coil structure within the Class 
of all-alpha proteins. This classification includes pro-
teins such as Prelamin-A/C, Vimentin, various Kera-
tins, and Lamin-B.

S-100B belongs to the Family of S100 proteins, which 
adopt a Fold resembling a pair of EF-hands within the EF-
hand superfamily. This family includes S100-A4, S100-A8, 
S100-B, and other S100 variants, as well as Filaggrin.

UCH-L1 falls under the category of cysteine pro-
teinases. The Superfamily of cysteine proteinases, 
with a Family specific to Ubiquitin carboxyl-terminal 
hydrolase UCH-L, includes two distinct Folds: the ca-
nonical cysteine proteinase catalytic core and a variant 
type. Notable proteins in this category include UCH-L1, 
UCH-L3, and YUH1 (Table 13).

The structural classification analysis of GFAP,  
S-100B, and UCH-L1 proteins revealed distinctive domain 
architectures and functional characteristics. For GFAP, 
multiple classifications were identified at both the super-
family and family levels. Within the superfamily classifica-
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Table 7. Three-dimensional structure prediction of the GFAP protein for the main protein

Scores
Serversa I-Tasser Lomets Robetta Phyre2 Swiss-Model AlphaFold

RMSDb

3Drefine 3 3.2 2.68 2.7 1.99 2.83

GalaxyWebrefine 2.97 3.18 2.86 2.5 2.19 2.89

Modrefine 3.07 3.29 3.41 2.62 2.01 3.08

DeepRefiner 0.58 3.26 3.49 2.87 2.6 2.54

TM-scorec

3Drefine 0.9655 0.9338 0.6641 0.9748 0.8489 0.7870

GalaxyWebrefine 0.9900 0.9483 0.9112 0.9900 0.9740 0.8215

Modrefine 0.9975 0.7093 0.9671 0.9993 0.9918 0.9449

DeepRefiner 0.9854 0.9216 0.8815 0.9663 0.9461 0.8796

GDT-TSd

3Drefine 0.1852 0.1869 0.2182 0.6538 0.4903 0.1794

GalaxyWebrefine 0.1892 0.1858 0.2164 0.6593 0.4854 0.173

Modrefine 0.1794 0.184 0.2153 0.6758 0.5211 0.1649

DeepRefiner 0.2582 0.1874 0.1887 0.7198 0.4984 0.1719

GDT-HAe

3Drefine 0.1146 0.1325 0.1476 0.4643 0.3312 0.1285

GalaxyWebrefine 0.1192 0.1308 0.1481 0.4643 0.3231 0.1273

Modrefine 0.1076 0.1267 0.1447 0.4918 0.362 0.1152

DeepRefiner 0.2228 0.1276 0.1238 0.5247 0.3312 0.1238

QMEANf

3Drefine 0.51 ± 0.05 0.53 ± 0.05 0.57 ± 0.05 0.74 ± 0.09 0.70 ± 0.07 0.58 ± 0.05

GalaxyWebrefine 0.52 ± 0.05 0.52 ± 0.05 0.57 ± 0.05 0.77 ± 0.09 0.73 ± 0.07 0.60 ± 0.05

Modrefine 0.51 ± 0.05 0.52 ± 0.05 0.55 ± 0.05 0.77 ± 0.09 0.73 ± 0.07 0.57 ± 0.05

DeepRefiner 0.73 ± 0.09 0.54 ± 0.05 0.58 ± 0.05 0.76 ± 0.09 0.73 ± 0.07 0.59 ± 0.05

MolProbityg

3Drefine 3.73 1.9 1.29 1.65 1.39 2.04

GalaxyWebrefine 2.33 1.33 0.73 0.8 1.03 0.69

Modrefine 2.56 2.18 1.52 1.37 1.46 1.59

DeepRefiner 2.73 2.95 2.61 2.62 2.74 3.1

Clash scoreh

3Drefine 40.18 6.14 2.57 13.95 7.06 6

GalaxyWebrefine 13.28 2.71 0.71 0.66 1.57 0.57

Modrefine 40.86 25 9.86 6.65 8.63 11.29

DeepRefiner 185.48 157.7 130.93 143.73 126.97 129.11
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Scores
Serversa I-Tasser Lomets Robetta Phyre2 Swiss-Model AlphaFold

Aligned lengthi 156 199 184 89 127 151

RFj 84.19% 96.05% 99.07% 100% 98.68% 99.07%

Overall factork 86.32% 95.88% - 100% 100% 99.70%
aServers: The computational protein structure prediction and refinement tools. bRMSD (root mean square deviation): Measures the average 
deviation between the predicted and reference structures, with lower values indicating better accuracy. cTM-score (template modeling 
score): Assesses the similarity between the predicted and native structures, where values closer to 1 indicate higher accuracy. dGDT-TS 
(Global Distance Test-Total Score): Evaluates the accuracy of structural alignment by considering the fraction of residues within a certain 
distance threshold from the reference structure. eGDT-HA (Global Distance Test-High Accuracy): A more stringent version of GDT-TS, 
focusing on higher precision in structural alignment. fQMEAN (Qualitative Model Energy Analysis): A composite score reflecting the overall 
quality of the predicted structure based on statistical potentials. gMolProbity: A structural validation score considering atomic clashes, 
bond angles, and steric hindrances, where lower values indicate better quality. hClash score: The number of atomic clashes per 1000 atoms, 
with lower values suggesting fewer steric conflicts. iAligned length: The number of residues successfully aligned between the predicted 
and reference structures. jRF (Residue Frequency): The percentage of correctly predicted residues compared to the reference structure. 
kOverall factor: A combined score reflecting the overall reliability of the predicted model

Table 7. Continuation

tion, residues 294–372 were assigned to an intermediate 
filament protein with a coiled-coil region (E-value: 2.09e–
23), while residues 68–104 exhibited a similar classifi-
cation (E-value: 0.00000000000033). Another segment, 
spanning residues 116–210, was classified as myosin rod 
fragments (E-value: 0.0131). Consistent with these find-
ings, the family classifications corroborated the interme-
diate filament protein classification for the same residue 
ranges, albeit with slightly different E-values.

For S-100B, a superfamily classification covering 
residues 1–89 identified an EF-hand motif (E-value: 
2.72e–24), while the family classification recog-
nized S100 proteins within the same range (E-value: 
0.0000647). In the case of UCH-L1, a superfamily clas-
sification spanning residues 3–221 indicated cysteine 
proteinases (E-value: 2.42e–76), with the family classi-
fication assigning the protein as ubiquitin carboxyl-ter-
minal hydrolase UCH-L within the same range (E-value: 
0.00000000137) (Table 14).

This synthesis underscores the structural categoriza-
tion and significance of these proteins within their respec-
tive superfamilies and families, highlighting their disor-
dered regions that are critical for functionality. The study 
demonstrates the utility of domain architecture analysis 
in understanding protein function and potential genetic 
modification strategies. These insights, derived from 
the integration of SMART, PredictProtein, and SCOP 
data, provide a detailed understanding of the structural 
and functional aspects of these proteins, which are es-
sential for future genetic research and manipulation. 
Structural classification tools such as CATH and SCOP 

were instrumental in establishing structure–function and 
evolution links to the GFAP protein and other proteins 
analyzed in this research. By analyzing domain architec-
tures and understanding the roles of specific domains, 
researchers can gain valuable insights into the func-
tions and mechanisms of these proteins, contributing to 
a broader understanding of traumatic brain injury bio-
markers such as GFAP, S-100B, and UCH-L1.

Pathway and systems biology analysis

The STRING analysis revealed a network of interac-
tions among GFAP, S-100B, and UCH-L1, with direct con-
nections supported by multiple lines of evidence (Figure 
6). The interaction between GFAP and S-100B exhibited 
the highest confidence (combined score: 0.925), driven 
by co-expression patterns (score: 0.239) and experimen-
tally validated interactions (score: 0.087). This pairing 
is biologically significant in the context of neuroinflam-
mation, as both proteins are enriched in pathways such 
as Signaling by ERBB4 (Reactome: HSA-1236394) and 
Neuroinflammation (WikiPathways: WP5083), which 
play a crucial role in TBI-induced glial activation.

S-100B and UCH-L1 demonstrated a moderate interac-
tion (combined score: 0.699), primarily supported by text 
mining (score: 0.671) and coexpression (score: 0.121). 
This interaction aligns with S-100B’s role in calcium sig-
naling and UCH-L1’s function in ubiquitin-mediated pro-
teolysis, as evidenced by its association with the Deubi-
quitination pathway (Reactome: HSA-5688426). The link 
between GFAP and UCH-L1, though weaker (combined 
score: 0.590), suggests a potential regulatory mechanism 
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Table 8. 3D-Structure prediction of S100B protein for the main protein

Scores
Serversa I-Tasser Lomets Quark Robetta Phyre2 Swiss-Model AlphaFold

RMSDb

3Drefine 3.37 3.62 3.41 3.35 3.32 3.25 3.42

GalaxyWebrefine 3.41 3.63 3.39 3.39 3.33 3.25 3.44

Modrefine 3.28 3.37 2.93 3.29 3.27 3.33 3.4

DeepRefiner 3.45 3.62 3.54 3.44 3.6 3.38 3.38

TM-scorec

3Drefine 0.9874 0.9973 0.9951 0.9835 0.9874 0.9838 0.9905

GalaxyWebrefine 0.9876 0.9982 0.9966 0.9838 0.9693 0.9803 0.9886

Modrefine 0.9978 0.9982 0.9992 0.9998 0.9996 0.9999 0.9992

DeepRefiner 0.9807 0.9980 0.9925 0.9873 0.9850 0.4927 0.9892

GDT-TSd

3Drefine 0.4484 0.4864 0.4239 0.4565 0.4185 0.4429 0.4429

GalaxyWebrefine 0.4511 0.4973 0.4321 0.4538 0.4266 0.4429 0.4484

Modrefine 0.4511 0.3886 0.074 0.4565 0.4348 0.4484 0.4457

DeepRefiner 0.4457 0.4725 0.4049 0.4592 0.4049 0.2199 0.4484

GDT-HAe

3Drefine 0.2418 0.269 0.2337 0.25 0.2201 0.25 0.2446

GalaxyWebrefine 0.2391 0.2977 0.2418 0.2446 0.2283 0.25 0.25

Modrefine 0.2391 0.1957 0.0504 0.2554 0.2418 0.2527 0.2473

DeepRefiner 0.2364 0.2527 0.2092 0.25 0.212 0.123 0.25

QMEANf

3Drefine 0.76 ± 0.09 0.70 ± 0.09 0.69 ± 0.09 0.77 ± 0.09 0.66 ± 0.09 0.82 ± 0.06 0.80 ± 0.09

GalaxyWebrefine 0.74 ± 0.09 0.69 ± 0.09 0.71 ± 0.09 0.75 ± 0.09 0.68 ± 0.09 0.82 ± 0.06 0.79 ± 0.09

Modrefine 0.73 ± 0.09 0.40 ± 0.09 0.84 ± 0.06 0.76 ± 0.09 0.66 ± 0.09 0.78 ± 0.09 0.79 ± 0.09

DeepRefiner 0.75  ± 0.09 0.71 ± 0.09 0.66 ± 0.09 0.76 ± 0.09 0.68 ± 0.09 0.80 ± 0.06 0.79 ± 0.09

MolProbityg

3Drefine 3.09 1.62 3.21 1.38 1.85 1.43 1.13

GalaxyWebrefine 1.46 1.5 1.75 1.51 0.92 1.43 0.72

Modrefine 2.47 2.86 2.18 2.26 1.87 1.84 1.93

DeepRefiner 2.99 2.66 2.69 2.68 2.65 2.76 2.67

Clash scoreh

3Drefine 20.58 4.8 22.63 6.86 7.54 1.38 3.43

GalaxyWebrefine 4.8 3.43 7.54 8.23 1.37 1.38 0.69

Modrefine 45.3 56.97 47.92 37.06 21.28 21.96 27.45

DeepRefiner 182.03 160.05 171.66 164.17 153.23 185.93 160.71
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Scores
Serversa I-Tasser Lomets Quark Robetta Phyre2 Swiss-Model AlphaFold

Aligned lengthi 85 89 27 83 80 29 79

RFj 93.33% 95.56% 93.33% 98.89% 93.33% 100.00% 100.00%

Overall factork 100.00% 89.29% 97.62% 100.00% 96.34% 92% 100.00%
aServers: The computational protein structure prediction and refinement tools. bRMSD (root mean square deviation): Measures the average 
deviation between the predicted and reference structures, with lower values indicating better accuracy. cTM-score (template modeling 
score): Assesses the similarity between the predicted and native structures, where values closer to 1 indicate higher accuracy. dGDT-TS 
(Global Distance Test-Total Score): Evaluates the accuracy of structural alignment by considering the fraction of residues within a certain 
distance threshold from the reference structure. eGDT-HA (Global Distance Test-High Accuracy): A more stringent version of GDT-TS, 
focusing on higher precision in structural alignment. fQMEAN (Qualitative Model Energy Analysis): A composite score reflecting the overall 
quality of the predicted structure based on statistical potentials. gMolProbity: A structural validation score considering atomic clashes, bond 
angles, and steric hindrances, where lower values indicate better quality. hClash score: The number of atomic clashes per 1000 atoms, with 
lower values suggesting fewer steric conflicts. iAligned length: The number of residues successfully aligned between the predicted and 
reference structures. jRF (residue frequency): The percentage of correctly predicted residues compared to the reference structure. kOverall 
factor: A combined score reflecting the overall reliability of the predicted model

Table 8. Continuation

connecting GFAP’s structural role in astrocytes to  
UCH-L1’s protein degradation functions, particularly in 
pathways like Autophagy (Reactome: HSA-9612973) and 
Parkinson Disease (WikiPathways: WP2371), which are 
relevant to protein aggregation in TBI.

Pathway enrichment analysis highlighted the cen-
tral role of neuroinflammation and ubiquitination in 
the network. GFAP and S-100B were strongly associ-
ated with immune response pathways, including Toll-
like Receptor Cascades (Reactome: HSA-168898) and 
Glial Cell Differentiation (GO:0010001), while UCH-L1 
was linked to protein homeostasis mechanisms such as 
the Ubiquitin-Proteasome System (KEGG: hsa05012). 

Discussion

This study establishes a foundational computational 
framework for analyzing GFAP, S-100B, and UCH-L1 as 
TBI biomarkers, leveraging state-of-the-art in silico tools 
to generate structural and functional insights. While 
the absence of experimental validation is acknowledged, 
the computational predictions align with recent advance-
ments in structural biology, including AI-driven protein 
modeling, exemplified by the Nobel Prize-winning work 
on AlphaFold. This underscores the growing reliability 
of such methods in guiding biomedical research.

Advanced bioinformatics tools facilitate the struc-
tural analysis of GFAP, S-100B, and UCH-L1, reveal-
ing intricate details of their secondary structures and 
functional motifs. Structural bioinformatics analysis 
of GFAP identified a predominantly alpha-helical ar-
chitecture (65%, 281 residues), complemented by mi-

nor beta-strands (6.2%, 25 residues) and coils (28.7%, 
120 residues). This configuration underscores its role 
as a stable cytoskeletal protein essential for main-
taining astrocytic integrity. Two conserved domains 
were identified: the Pfam00038 intermediate filament 
domain (residues 68–376; E-value: 1.12e–127) and 
the Pfam04732 filament head domain (residues 4–66; 
E-value: 2.51e–08). These domains, along with motifs 
such as Filament_head and DUF1664, highlight GFAP’s 
involvement in synaptic plasticity and axonal transport.

PTMs, including the IF rod domain (residues 69–377) 
and a bipartite nuclear localization signal (NLS), were 
computationally predicted, suggesting roles in DNA 
repair and nuclear shuttling during traumatic injury. 
Solvent accessibility analysis indicated that 63.89% 
of residues are buried, conferring proteolytic resistance 
and explaining GFAP’s persistence in biofluids postTBI.

Clinically, GFAP’s α-helix-rich structure aligns with 
its use in FDA-approved assays (e.g., BANYAN GFAP 
test) to reduce unnecessary neuroimaging in mild TBI 
cases. This structural stability (Gogishvili et al. 2024) 
enables reliable detection in serum and CSF. The study’s 
novel identification of the DUF1664 motif, previously 
uncharacterized in GFAP, opens avenues for investigat-
ing its role in neuroinflammation. AlphaFold-predicted 
models (TM-score: 0.92 ± 0.06; RMSD: 2.7 ± 2.0 Å) 
surpassed prior homology-based structures, offering 
atomic-level insights into GFAP’s interaction with in-
flammatory mediators such as IL-6 and TNF-α. These 
findings bridge structural predictions with experimen-
tal validations, including murine models demonstrating 
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Table 9. 3D-Structure prediction of UCH-L1 protein for the main protein

Scores
Serversa I-Tasser Lomets Robetta Phyre2 Swiss-Model AlphaFold

RMSDb

3Drefine 3.21 2.93 3.08 3.21 3.27 3.36

GalaxyWebrefine 3.46 2.86 3.12 3.23 3.27 3.34

Modrefine 3.21 2.93 3.17 3.2 3.35 3.36

DeepRefiner 3.33 3 3.1 3.34 3.27 3.25

TM-scorec

3Drefine 0.9958 0.9965 0.9966 0.9966 0.9923 0.9963

GalaxyWebrefine 0.9960 0.9964 0.9975 0.9956 0.9960 0.9956

Modrefine 0.9996 0.9988 0.9994 0.9991 0.9993 0.9997

DeepRefiner 0.9968 0.9949 0.9932 0.9891 0.7443 0.9946

GDT-TSd

3Drefine 0.093 0.0953 0.0919 0.0919 0.0942 0.0897

GalaxyWebrefine 0.0942 0.0953 0.0942 0.093 0.0942 0.0919

Modrefine 0.0942 0.0953 0.0953 0.093 0.0942 0.0908

DeepRefiner 0.0908 0.0968 0.0942 0.093 0.0942 0.0886

GDT-HAe

3Drefine 0.0493 0.0516 0.0482 0.0482 0.0516 0.0493

GalaxyWebrefine 0.0504 0.0516 0.0504 0.0482 0.0516 0.0504

Modrefine 0.0504 0.0504 0.0493 0.0482 0.0493 0.0493

DeepRefiner 0.046 0.0518 0.0493 0.046 0.0516 0.046

QMEANf

3Drefine 0.88 ± 0.06 0.82 ± 0.06 0.81 ± 0.06 0.86 ± 0.06 0.87 ± 0.06 0.86 ± 0.06

GalaxyWebrefine 0.86 ± 0.06 0.81 ± 0.06 0.81 ± 0.06 0.87 ± 0.06 0.87 ± 0.06 0.86 ± 0.06

Modrefine 0.84 ± 0.06 0.80 ± 0.06 0.79 ± 0.06 0.85 ± 0.06 0.86 ± 0.06 0.84 ± 0.06

DeepRefiner 0.83 ± 0.06 0.87 ± 0.06 0.81 ± 0.06 0.85 ± 0.06 0.87 ± 0.06 0.85 ± 0.06

MolProbityg

3Drefine 2.74 1.66 1.56 1.76 1.14 1.76

GalaxyWebrefine 1.3 1.62 1.47 1.18 1.14 1.29

Modrefine 2.11 2.36 2.16 2.09 2.25 2.25

DeepRefiner 2.95 2.96 2.87 2.89 1.14 2.71

Clash scoreh

3Drefine 13.28 6.35 5.19 17.32 1.7 5.48

GalaxyWebrefine 5.48 6.93 7.5 3.75 1.7 3.46

Modrefine 43.3 43.3 47.92 38.39 41.28 40.99

DeepRefiner 188.54 192.07 190.72 200.63 1.7 176.94
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Scores
Serversa I-Tasser Lomets Robetta Phyre2 Swiss-Model AlphaFold

Aligned lengthi 79 89 87 85 91 91

RFj 93.67% 95.48% 95.93% 98.19% 96.83% 100.00%

Overall factork 94.88% 83.57% 91.63% 94% 98.09% 92.99%
aServers: The computational protein structure prediction and refinement tools. bRMSD (root mean square deviation): Measures the average 
deviation between the predicted and reference structures, with lower values indicating better accuracy. cTM-score (template modeling 
score): Assesses the similarity between the predicted and native structures, where values closer to 1 indicate higher accuracy. dGDT-TS 
(Global Distance Test-Total Score): Evaluates the accuracy of structural alignment by considering the fraction of residues within a certain 
distance threshold from the reference structure. eGDT-HA (Global Distance Test-High Accuracy): A more stringent version of GDT-TS, 
focusing on higher precision in structural alignment. fQMEAN (Qualitative Model Energy Analysis): A composite score reflecting the overall 
quality of the predicted structure based on statistical potentials. gMolProbity: A structural validation score considering atomic clashes, bond 
angles, and steric hindrances, where lower values indicate better quality. hClash score: The number of atomic clashes per 1000 atoms, with 
lower values suggesting fewer steric conflicts. iAligned length: The number of residues successfully aligned between the predicted and 
reference structures. jRF (residue frequency): The percentage of correctly predicted residues compared to the reference structure. kOverall 
factor:A combined score reflecting the overall reliability of the predicted model

Table 9. Continuation

GFAP’s nuclear translocation during DNA damage (Posti 
et al. 2017).

S-100B exhibited a highly α-helical structure (67.39%, 
63 residues) with no β-strands and 32.61% coils, con-
sistent with its role as a calcium-sensing protein. 
The cd05027 S100B domain (residues 2–89; E-value: 
1.68e–47) and EF-hand motifs (residues 49–84) were 
critical for Ca2+ binding and TLR4-mediated neuroinflam-

matory signaling. Buried residues (66.30%) stabilized 
Ca2+-binding pockets, while solvent-exposed regions 
mediated interactions with inflammatory receptors. 
Structural refinement using DeepRefiner yielded high-
accuracy models (RMSD: 3.45 Å; TM-score: 0.99), re-
solving ambiguities in earlier SWISS-MODEL templates. 
A noncanonical coiled-coil region (residues 26–78), iden-
tified via ThreaDom analysis, suggests a scaffold for Ca2+-

Figure 5. A) Cartoon representation of the GFAP protein shows known and predicted motifs, where the Filament (68–376) 
is highlighted in purple, Filament_head (7–66) in red, DUF1664 (129–199) in blue, and DUF1664_2 (226–315) in green.  
B) The cartoon view showed known and predicted motifs of S-100B, where S_100 (4–47) is highlighted in purple, EF-hand_1 
in red, EF-hand_7 in blue, EF-hand_6 in green, EF-hand_4 in orange, EF-hand_5 in brown, EF-hand_8 in yellow, and Spt20 
in cyan. C) The cartoon view showed known and predicted motifs of UCH-L1 protein is displayed with the (3–221) region 

highlighted in red, while the remaining structure is in green

Table 10. Best template structure for GFAP, S-100B, and UCH-L1

Proteina Subject Tm-Score RMSDb Sequence identity Covc

GFAP 7ogtB1 0.67 1.17 0.104 0.683

S-100B 1xk4L 0.947 0.64 0.378 0.978

UCH-L1 2etlA 0.994 0.42 1 1
aProtein ranking is based on the TM-score of the structural alignment between the query structure and known structures in the PDB library. 
bRMSDa is the RMSD between residues that TM-align structurally aligns. cCov represents the coverage of the alignment by TM-align and is 
equal to the number of structurally aligned residues divided by the length of the query protein

A B C
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Table 11. Motif analysis of GFAP, S-100B and UCH-L1 protein using MotifFinder and MotifScan servers

Proteins Pfam_IDa Descriptionb Positionc E-valued

GFAP Filament PF00038, Intermediate filament protein 376..68 3.1e−109

Filament_head PF04732, Intermediate filament head (DNA binding) region 66..7 2.1e–06

DUF1664 PF07889, Protein of unknown function (DUF1664) 129.199
315..226

0.23
0.22

S-100B S_100 PF01023, S-100/ICaBP type calcium binding domain 47..4 8.1e–22

EF-hand_1 PF00036, EF-hand 80..54 3.7e–06

EF-hand_7 PF13499, EF-hand domain pair 78..26 2e–05

EF-hand_6 PF13405, EF-hand domain 79..59 0.01

EF-hand_4 PF12763, Cytoskeletal-regulatory complex EF-hand 80..32 0.0035

EF-hand_5 PF13202, EF-hand 78..55 0.011

EF-hand_8 PF13833, EF-hand domain pair 79..43 0.045

Spt20 PF12090, Spt20 family 63..25 0.076

UCHL1 Peptidase_C12 PF01088, Ubiquitin carboxyl-terminal hydrolase, family 1 204..5 1.1e–57
aPfam ID: The identifier for the protein family in the Pfam database. bDescription: Briefly describe the protein family, including its function 
or characteristic features. cPosition: The range of amino acid positions in the protein associated with the respective Pfam ID. dE-value: 
The statistical significance of the Pfam domain match; a lower value indicates a more significant match

Table 12. Post-translational modification site prediction of GFAP, S-100B, and UCH-L1 protein using PROSITE server

Proteinsa Categoryb Signaturec Matching positionsd

GFAP RNA
Associated
Protein
Domain
Posttranslational
Modifications

IF_ROD_2 
Intermediate filament (IF) rod domain profile

69–377

IF_ROD_1 
Intermediate filament (IF) rod domain signature

363–371

S-100B RNA
Associated
Protein
Domain
Posttranslational
Modifications

EF_HAND_2 
EF-hand calcium-binding domain profile

49–84

S100_CABP 
S-100/ICaBP type calcium-binding protein signature

57–78

EF_HAND_1 
EF-hand calcium-binding domain

62–74

U-CHL1 RNA
Associated
Protein
Domain
Posttranslational
Modifications

UCH_1 
Ubiquitin carboxyl-terminal hydrolase family one cysteine 

active-site

84–100

aProteins: The name of the protein being analyzed. bCategory: The classification of the protein domain or its associated modifications, such as 
RNA-associated or posttranslational modifications. cSignature: The specific domain signature associated with the protein, including the domain 
profile and its functional description. dMatching positions: The protein’s range of amino acid positions corresponds to the identified signature

dependent oligomerization, a mechanism not previously 
described (Moreira et al. 2021; Michetti et al. 2023).

S-100B’s clinical relevance is underscored by its as-
sociation with blood-brain barrier disruption, as demon-
strated in multicenter studies (Mondello et al. 2021). 

Its EF-hand motifs align with experimental evidence 
showing S100B activation of TLR4/NF-κB pathways, ex-
acerbating neuroinflammation in rodent models (Gupta  
et al. 2021). The study’s prediction of S100B’s coiled-
coil domain provides a structural basis for its oligomeri-
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Table 13. Structural classification of proteins using (SCOP SERVER)

Proteina Superfamilyb Familyc Foldd Classe

GFAP Superfamily 3001560  
— intermediate filament 

protein, coiled-coil region

Family 4003819  
— intermediate filament 

protein, coiled-coil region

Fold 2000962  
— Left-handed parallel  

coiled-coil

Class 1000000  
– all alpha proteins

S-100B Superfamily 3001983  
— EF-hand

Family 4000919  
— S100 proteins

Fold 2000120  
– pair of EF-hands-like

Class 1000000  
– all alpha proteins

UCH-L1 Superfamily 3001808  
— cysteine proteinases

Family 4000880  
— ubiquitin carboxy-
terminal hydrolase 

UCH-L

Fold 2001107  
— a canonical type of cysteine 

proteinases catalytic core
Fold 2001570  

— variant types of cysteine 
proteinases catalytic core

Class 1000003 
– alpha and beta 
proteins (a+b)

aProtein: The name of the protein being analyzed. bSuperfamily: The broader classification of the protein family based on structural and 
functional similarities. cFamily: The specific family within the superfamily, detailing the protein’s function. dFold: The structural classification 
of the protein, indicating the arrangement of its secondary structure elements. eClass: The highest classification level is based on the protein 
structure

Table 14. Structural classification of GFAP, S-100B and UCH-L1 proteins using (SUPERFAMILY SERVER)

Proteina Classification levelb Classificationc E-valued

GFAP Superfamily 294–372 Intermediate filament protein, coiled-coil region 2.09e–23

68–104 Intermediate filament protein, coiled-coil region 3.3e–11

116–210 Myosin rod fragments 1.31e–2

Family 294–372 Intermediate filament protein, coiled-coil region 3.43e–5

68–104 Intermediate filament protein, coiled-coil region 6.6e–4

116–210 Myosin rod fragments 0.012

S-100B Superfamily 1–89 EF-hand 2.72e–24

Family 1–89 S100 proteins 6.47e–5

UCH-L1 Superfamily 3–221 Cysteine proteinases 2.42e–76

Family 3–221 Ubiquitin carboxyl-terminal hydrolase UCH-L 1.37e–9
aProtein: The name of the protein being analyzed. bClassification level: The hierarchical level of structural classification, distinguishing 
between superfamily and family. cClassification: The specific protein classification within its respective level indicates structural and functional 
similarities. dE-value: The statistical significance of the classification, representing the likelihood of the match occurring by chance

zation, a feature implicated in amplifying inflammatory 
cascades. Furthermore, therapeutic targeting of S-100B 
using pentamidine, which reduces IL-6 and TNF-α in 
vivo, validates the computational insights into its Ca2+-
binding pockets as druggable sites (Gupta et al. 2021).

UCH-L1 exhibited a balanced secondary struc-
ture, with 40.81% α-helices (91 residues), 17.94% 
β-strands (40 residues), and 41.26% coils (92 residues). 
The cd09616 Peptidase_C12 domain (residues 5–219; 
E-value: 3.16e–127) harbored a catalytic triad (Cys90, 
His161, Asp176) essential for ubiquitin hydrolysis.  
Solvent-exposed residues (42.60%) facilitated inter-
actions with ubiquitinated proteins such as tau and 
α-synuclein, while buried regions stabilized the prote-

ase core. I-TASSER simulations revealed conformation-
al flexibility in the ubiquitin-binding domain (residues 
84–100), a feature undetected in static X-ray structures 
(PDB: 2ETL). Phylogenetic analysis positioned UCH-L1 
within the cysteine protease superfamily, resolving its 
evolutionary divergence from UCHL-3 (bootstrap value: 
98%) (Puri et al. 2024).

UCH-L1’s dual role in TBI – neuroprotection via ag-
gregate clearance and neurotoxicity through excessive 
proteolysis – was corroborated by clinical studies. Its 
rapid release postinjury (detectable within 1 h) supports 
its inclusion in the ALERT-TBI diagnostic panel, which 
achieves 97% sensitivity for detecting intracranial le-
sions (Papa et al. 2016). The study’s dynamic modeling 
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Figure 6. Protein–protein interaction network of GFAP, S-100B, and UCH-L1, generated using the STRING database, 
illustrates the functional relationships among these proteins in the context of traumatic brain injury (TBI). Nodes represent 
proteins, while edges represent interaction confidence scores, with thicker lines indicating higher confidence. GFAP and 
S-100B exhibit the strongest interaction (combined score: 0.925), supported by coexpression and experimental evidence, 
while S-100B and UCH-L1 show moderate interaction (combined score: 0.699). GFAP and UCH-L1 are linked with a lower 
confidence score (0.590), primarily supported by text mining. The network highlights the involvement of these proteins in 

TBI-related pathways, including neuroinflammation and ubiquitination. Pathway annotations are color-coded for clarity

Figure 7. Integrative map of predicted results for GFAP. In line 1, the conserved regions are specified at 66–130, 157–175, 
177–194, 251–276 and 367–398. Alpha Helix, Beta Strand, Other, Exposed and Buried from the secondary structure 
prediction servers, are specified in lines 2, 3, 4, 5, and 6. The result of protein binding site is specified in line 7. In the last,

predicted motifs are specified in line 8

Predicated motifs
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Figure 8. Integrative map of predicted results for S-100B. In line 1, the conserved regions are specified at (22–38). Alpha 
Helix, Beta Strand, Other, Exposed and Buried from the secondary structure prediction servers, is specified at line 2, 3, 4, 5, 

and 6. The result of protein binding site is specified in line 7. In the last, predicted motifs are specified in line 8

Figure 9. Integrative map of predicted results for UCH-L1. In line 1, the conserved regions are specified at (61–92, 108–123, 
125–144, 146–186, and 196–223). Alpha Helix, Beta Strand, Other, Exposed and Buried from the secondary structure 
prediction servers, are specified in Lines 2, 3, 4, 5, and 6. The result of protein binding site is specified at line 7. In the last,

predicted motifs are specified in line 8

Predicated motifs

Predicated motifs
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of UCH-L1’s catalytic triad provides mechanistic insights 
into its therapeutic modulation. For instance, inhibitors 
like 6-AMA have been shown to reduce axonal degenera-
tion in vitro, aligning with computational predictions of 
UCH-L1’s role in tau aggregation (Yu et al. 2018). These 
findings highlight UCH-L1’s potential as a therapeutic 
target for mitigating secondary injury in TBI.

The focus on these three biomarkers was inten-
tional, as they are well-characterized and clinically vali-
dated indicators of TBI, providing a targeted basis for 
future expansion to additional molecules. Though static 
models were employed, they offer critical preliminary 
insights into solvent accessibility, conserved regions, 
and PTMs, which can inform experimental designs for 
dynamic or microenvironment-specific studies. These 
computational findings serve as a roadmap for comple-
mentary experimental studies and clinical validation, 
ensuring a balanced integration of in silico and empiri-
cal approaches in advancing TBI biomarker research.

We recommend prioritizing experimental valida-
tion of the predicted structural and functional features 
to confirm their biological relevance. Future studies 
should expand the biomarker panel to include addi-
tional TBI-associated molecules, enhancing diagnostic 
specificity. Additionally, integrating multiomics ap-
proaches – including genomics, transcriptomics, and 
proteomics – could provide a holistic understanding 
of TBI mechanisms, effectively bridging computational 
predictions with clinical insights.

Conclusions

This study leverages an integrated proteomic and 
bioinformatic framework to elucidate the structural 
and functional nuances of key TBI biomarkers: GFAP, 
S-100B, and UCH-L1. Through meticulous analysis, 
we have identified conserved regions, secondary 
structures, solvent accessibility, and PTM sites, en-
hancing our understanding of their structural mod-
els and domain architectures. Domain analysis po-
sitioned each protein within specific superfamilies, 
shedding light on domain-specific functions. The pre-
dominance of alpha-helices in GFAP and S-100B and 
a balanced mix of structural elements in UCH-L1 
were confirmed, with solvent accessibility profiles in-
dicating a majority of buried regions for GFAP and 
S-100B, whereas UCH-L1 displayed a more exposed 
structure (Figures 7–9).

Advanced bioinformatics servers facilitated the iden-
tification of protein binding motifs and structural fea-
tures, with AlphaFold and I-TASSER providing the most 
accurate full-length tertiary structure predictions. Do-
main architecture analysis across various databases con-
firmed GFAP’s affiliation with the intermediate filament 
superfamily, S-100B’s with the EF-hand superfamily, 
and UCH-L1’s with the cysteine proteinase superfamily. 
These findings offer profound insights into the function-
al roles of these proteins in TBI pathophysiology.

The integrative approach adopted in this study not 
only deepens our comprehension of TBI biomarkers but 
also paves the way for the development of targeted diag-
nostic and therapeutic strategies, ultimately enhancing 
patient care.

Advanced bioinformatics servers facilitated the iden-
tification of protein binding motifs and structural fea-
tures, with Alphafold and I-TASSER providing the most 
accurate full-length tertiary structure predictions. 
The domain architecture, analyzed through various da-
tabases, revealed GFAP’s affiliation with the interme-
diate filament superfamily, S-100B’s with the EF-hand 
superfamily, and UCH-L1’s with the cysteine proteinase 
superfamily. These findings offer profound insights into 
the proteins’ functional roles in TBI pathophysio logy.

The integrative approach adopted in this study deep-
ens our comprehension of TBI biomarkers and paves 
the way for the development of targeted diagnostic and 
therapeutic strategies, enhancing patient care. 
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