RESEARCH PAPER
In silico identification of transcription factors associated
with the biosynthesis of carotenoids in corn (Zea mays L.)
More details
Hide details
1
Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, Iran
2
Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research Center, AREEO, Zarghan, Iran
3
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, Italy
4
Department of Agronomy and Plant Breeding, Shahrekord University, Shahrekord, Iran
Submission date: 2016-06-15
Final revision date: 2016-11-11
Acceptance date: 2016-11-17
Publication date: 2017-05-25
BioTechnologia 2017;98(1):41-51
KEYWORDS
TOPICS
ABSTRACT
Carotenoids, a diverse group of colorful pigments, contribute to the development, light harvesting and photoprotection in plants as well as human health. Due to the interesting properties of carotenoids, enhanced carotenoid biosynthesis has been of ongoing interest. Recent advances in computational biology and bioinformatics make it more feasible to understand the transcriptional regulatory network underlying carotenoid biosynthesis. Studies on carotenoid biosynthesis in corn (Zea mays L.) have indicated the pivotal role of the phytoene synthase gene PSY1 (accession: GRMZM2G300348) in endosperm color and carotenoid accumulation in corn kernels. Computational approaches such as Genomatix, PlantPAN, PlantCARE, PlantTFDB and IGDE6 have been used for promoter prediction, regulatory features and transcription factor identification, as well as pairwise promoter comparisons. Four transcripts have been identified for the PSY1 gene. Based on Genomatix and PlantPAN, the promoter predicted for GRMZM2G300348_T01 was different from that predicted for the other three transcripts (GRMZM2G300348_T02, GRMZM2G300348_T03 and GRMZM2G300348_T04). The results indiated that the promoter of GRMZM2G300348_T01 has more diverse motifs involved in hormonal/environmental stress responses. The most significant result obtained from this study is the discovery of two transcription factors belonging to the HB family that are co-expressed with all four transcripts of PSY1 under environmental stresses. It is, therefore, likely that these transcription factors may act as critical regulators of PSY1 gene expression in corn. Identification of the proteins acting upstream of PSY1 within corn will shed light on the fine tuning of PSY1 expression regulation. Such an understanding would also contribute to metabolic engineering aimed at enhanced carotenoid biosynthesis.
REFERENCES (56)
1.
Andorf C.M., Cannon E.K., Portwood J.L., Gardiner J.M., Harper L.C., Schaeffer M.L., Braun B.L., Campbell D.A., Vinnakota A.G., Sribalusu V.V. et al. (2015) MaizeGDB 2015: new tools, data, and interface for the maize model organism database. Nucl. Acids Res. 44(D1): D1195-1201.
2.
Ariel F.D., Manavella P.A., Dezar C.A., Chan R.L. (2007) The true story of the HD-Zip family. Trends Plant Sci. 12: 419-426.
3.
Arango J., Wüst F., Beyer P., Welsch R. (2010) Characterization of phytoene synthase from cassava and their involvement in abiotic stress-mediated responses. Planta 232: 1251-1262.
4.
Bender J. (2004) DNA methylation and epigenetics. Annu. Rev. Plant Biol. 55: 41-68.
5.
Bou-Torrent J., Toledo-Ortiz G., Ortiz-Alcaide M., Cifuentes- Esquivel N., Halliday K.J., Martinez-García J.F., Rodriguez- Concepcion M. (2015) Regulation of carotenoid biosynthesis by shade relies on specific subsets of antagonistic transcription factors and cofactors. Plant Physiol. 169(3):1584-1594.
6.
Bramley P.M. (2002) Regulation of carotenoid formation during tomato fruit ripening and development. J. Exp. Bot. 53: 2107-2113.
7.
Cao X., Jacobsen S.E. (2002) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc. Natl. Acad. Sci. U.S.A. 99(Suppl4): 16491-16498.
8.
Cazzonelli C.I., Pogson B.J. (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 15: 266-274.
9.
Chow C.N., Zheng H.Q., Wu N.Y., Chien C.H., Huang H.D., Lee T.Y., Chiang-Hsieh Y.F., Hou P.F., Yang T.Y., Chang W.C. (2016) PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucl. Acids Res. 44: 1154-1160.
10.
Cunningham F.X., Gantt E. (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 557-583.
11.
Espley R.V., Hellens R.P., Putterill J., Stevenson D.E., Kuttyamma S., Allan A.C. (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 49: 414-427.
12.
Fiedor J., Burda K. (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6: 466-488.
13.
Fraser P.D., Bramley P.M. (2004) The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43: 228-265.
14.
Fu Z., Yan J., Zheng Y., Warburton M.L., Crouch J.H, Li J.S. (2010) Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species. Theor. Appl. Genet. 120: 709-720.
15.
Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K. (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124: 509-525.
16.
Gallagher C.E., Matthews P.D., Li F., Wurtzel E.T. (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol. 135(3): 1776-1783.
17.
Ge F., Luo X., Huang X., Zhang Y., He X., Liu M., Lin H., Peng H., Li L., Zhang Z.H., Pan G., Shen Y. (2016) Genome-wide analysis of transcription factors involved in maize embryonic callus formation. Physiol. Plant. doi: 10.1111/ppl.12470.
18.
Grotewold E., Drummond B.J., Bowen B., Peterson T. (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76: 543-553.
19.
Hattori T., Totsuka M., Hobo T., Kagaya Y., Yamamoto-Toyoda A. (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol. 43: 136-140.
20.
Jeddeloh J.A., Bender J., Richards E.J. (1998) The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev. 12(11): 1714-1725.
21.
Kobayashi S., Goto-Yamamoto N., Hirochika H. (2004) Retrotransposon induced mutations in grape skin colour. Science 304: 982.
22.
Kooter J.M., Matzke M.A., Meyer P. (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4(9): 340-347.
23.
Kubo H., Peeters A.J., AartsM.G., Pereira A., Koornneef M. (1999) ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell 11: 1217-1226.
24.
Larkindale J., Vierling E. (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol. 146: 748-761.
25.
Lee T.I., Rinaldi N.J., Robert F., Odom D.T., Bar-Joseph Z., Gerber G.K., Hannett N.M., Harbison C.T., Thompson C.M., Simon I. et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799-804.
26.
Lescot M., Déhais P., Thijs G., Marchal K., Moreau Y., Van de Peer Y., Rouzé P. Rombauts S. (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl. Acids Res. 30(1): 325-327.
27.
Li F.,Vallabhaneni R., Yu J., Rocheford T., Wurtzel E.T. (2008) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol. 147: 1334-1346.
28.
Lin J.J., Yu C.P., Chang Y.M., Chen S.C., Li W.H. (2014) Maize and millet transcription factors annotated using comparative genomic and transcriptomic data. BMC Genomics 15: 818.
29.
Lindroth A.M., Cao X., Jackson J.P., Zilberman D., McCallum C.M., Henikoff S., Jacobsen S.E. (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292(5524): 2077-2080.
30.
Maass D., Arango J., Wüst F., Beyer P., Welsch R. (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS ONE 4: e6373.
31.
Martel C., Vrebalov J., Tafelmeyer P., Giovannoni J.J. (2011) The tomato MADS box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING- dependent manner. Plant Physiol. 157: 1568-1579.
32.
Palaisa K.A., Morgante M., Williams M., Rafalski A. (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15: 1795-1806.
33.
Park S., Kim H.S, Jung Y.J., Kim S.H., Ji C.Y., Wang Z., Jeong J.C., Lee H.S., Lee S.Y., Kwak S.S. (2016) Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci. Rep. 6: 33563.
34.
Paz-Ares J., Ghosal D., Wienand U., Peterson P.A., Saedler H. (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 6: 3553-3558.
35.
Pérez-Rodríguez P., Riańo-Pachón D.M., Corręa L.G.G., Rensing S.A., Kersten B., Mueller- Roeber B. (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucl. Acids Res. 38: D822-D827.
36.
Ponger L., Mouchiroud D. (2002) CpGProD: identifying CpG islands associated with transcription start sites in large genomic mammalian sequences. Bioinformatics 18(4): 631- 633.
37.
Pradhan S., Urwin N.A., Jenkins G.I., Adams R.L. (1999) Effect of CWG methylation on expression of plant genes. Biochem. J. 341(Pt3): 473-476.
38.
Rani V. (2007) Computational methods to dissect cis-regulatory transcriptional networks. J. Biosci. 32: 1325-1330.
39.
Rao A.V., Rao L.G. (2007) Carotenoids and human health. Pharmacol Res. 55: 207-216.
40.
Rodríguez-VillalónA., Gas E., Rodríguez-Concepción M. (2009) Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J. 60: 424-435.
41.
Rombauts S., Florquin K., Lescot M., Marchal K., Rouze P., van de Peer Y. (2003) Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Plant Physiol. 132(3): 1162-1176.
42.
Romualdi C., Bortolzuzz S., D'Alessi F., Danieli G.A. (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol. Genomics 12: 159-162.
43.
Sagawa J.M., Stanley L.E., LaFountain A.M., Frank H.A., Liu C., Yuan Y.W. (2015) An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New phytol. 209(3): 1049-1057.
44.
Sandmann G., Römer S., Fraser P.D. (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab. Eng. 8: 291-302.
45.
Takos A.M., Jaffe F.W., Jacob S.R., Bogs J., Robinson S.P., Walker A.R. (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 142:1216-1232.
46.
Tao N., Hu Z., Liu Q., Xu J., Cheng Y., Guo L., Guo W., Deng X. (2007) Expression of phytoene synthase gene (Psy) is enhanced during fruit ripening of Cara Cara navel orange (Citrus sinensis Osbeck). Plant Cell Rep. 26(6): 837-843.
47.
Toledo-Ortiz G., Huq E., Rodríguez-Concepción M. (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc. Natl. Acad. Sci. USA 22; 107(25): 11626-11631.
48.
Tran R.K., Henikoff J.G., Zilberman D., Ditt R.F., Jacobsen S.E., Henikoff S. (2005) DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr. Biol. 15(2): 154-159.
49.
Uthup T.K., Ravindran M., Bini K., Thakurdas S. (2011) Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Mol. Plant 4: 996-1013.
50.
Vaucheret H., Fagard M. (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet. 17(1): 29-35.
51.
Vilaprinyo E., Alves R., Sorribas A. (2010) Minimization of biosynthetic costs in adaptive gene expression responses of yeast to environmental changes. PLoS Comput. Biol. 6(2): e1000674.
52.
Welsch R., Beyer P., Hugueney P., Kleinig H., von Lintig J. (2000) Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 211: 846-854.
53.
Welsch R., Wüst F., Bär C., Al-Babili S., Beyer P. (2008) A third phytoene synthase is devoted to abiotic stressinduced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol. 147: 367-380.
54.
Wittkopp P.J., Kalay G. (2011) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 6, 13(1): 59-69.
55.
Zhou X., Welsch R., Yang Y., Álvarez D., Riediger M., Yuan H., et al. (2015) Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc. Natl. Acad. Sci. USA 112(11): 3558-3563.
56.
Zhu C., Yamamura S., Koiwa H., Nishihara M., Sandmann G. (2002) cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea. Plant Mol. Biol. 48: 277-285.