RESEARCH PAPER
A preliminary study on some Chlorella spp. for biodiesel production
More details
Hide details
1
Botany and Microbiology Department, Faculty of Science, Alexandria University, Egypt
2
National Institute of Oceanography and Fisheries, Alexandria, Egypt
Submission date: 2017-04-23
Final revision date: 2017-08-31
Acceptance date: 2017-10-01
Publication date: 2018-03-16
BioTechnologia 2017;98(4):323-331
KEYWORDS
TOPICS
ABSTRACT
This paper describes a preliminary analysis of the possibility to use different algae species for biodiesel production. A lab scale cultivation of five Chlorella spp. was conducted to evaluate their potential for biodiesel production, with respect to their growth and fatty acids characterization, as an initial step to transferring them into the outdoor open ponds. The results of algal dry wt (mg/l), arranged in descending order, were Chlorella salina, 200 ± 0.02; Chlorella vulgaris , 192.28 ± 0.00; Chlorella stigmatophora , 162 ± 13.06; Chlorella capsulata , 101.08 ± 7.54; Chlorella marina , 86 ± 6.99, while the growth rates (mg/d) were Chlorella marina , 2 ± 0.17; Chlorella vulgaris , 1.78 ± 0.14; Chlorella stigmatophora , 1.52 ± 0.11; Chlorella capsulata , 1.51 ± 0.13; Chlorella salina , 1.16 ± 0.09. The highest lipid content (dry wt based) was recorded for Chlorella capsulata (446 ± 0.33 mg/g), while Chlorella vulgaris showed the lowest content (255 ± 2.5 mg/g). The amounts of the neutral lipids (dry wt and total lipid based) were found in the range of 14-28%, and 60-80%, respectively. Data showed that Chlorella salina was the oil-richest species, while C. capsulata was the poorest. The extracted oil was also characterized according to its acid and saponification values. Based on the analysis of fatty acid methyl esters (FAMEs), the carbon chain lengths ranged from C6 to C21, and most of them were of saturated types. The most important fractions for best quality biodiesel (C14 : 0, C16 : 0, and C18 : 0) were detected in all examined microalgae. The distribution patterns of fatty esters in C. salina , C. marina , and C. stigmatophora were the same. C18 : 1 was not present in C. capsulata , while C16 : 1 was completely absent from all species. However, no polyunsaturated fatty acids were detected in this study. The relative molecular weight of FAMEs and the percentage of the free fatty acids were also recorded for each microalga. The study was meant not only to enrich the Chlorella database, but it was also concerned with the potential of the three nonnative strains to adapt to the Egyptian habitats to be cultivated under the same conditions. The results of our studies are thus an important achievement.
REFERENCES (51)
1.
Al-lwayzy S., Yusaf T., Al-Juboori R. (2014) Biofuels from the freshwater microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies 7(3): 1829-1851.
2.
Araújo S., Garcia V. (2005) Growth and biochemical composition of the diatom Chaetoceros cf. wighamii bright well under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246(1): 405-412.
3.
Betiku E., Adepoju T. (2013) Methanolysis optimization of sesame (Sesamum indicum) oil to biodiesel and fuel quality characterization. Int. J. Energ. Env. Eng. 4: 9-16.
4.
Chen L., Liu T., Zhang W., Chen X., Wang J. (2012) Biodiesel production from algae oil high in free fatty acids by twostep catalytic conversion. Bioresource Technol. 111: 208- 214.
5.
Chisti Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.
6.
Del Río E., Armendáriz A., García-Gómez E., Guerrero G. (2015 ) Continuous culture methodology for the screening of microalgae for oil. J. Biotechnol. 195: 103-107.
7.
Demirbas A. (2009) Progress and recent trends in biodiesel fuels. Energy Convers. Manage. 50(1): 14-34.
8.
Demirbas A., Demirbas M. (2010) Algae energy: algae as a new source of biodiesel. Green energy and technology. London: Springer-Verlag pp 204.
9.
Deng X., Li Y., Fei X. (2009) Microalgae: a promising feedstock for biodiesel. Afr. J. Microbiol. Res. 3(13):1008-1014.
10.
H.Y. El-Kassas H. Y., Mohammady N. G.-E., H.S. El-Sayed H. S., EL-Sherbiny B. A. (2016) Growth and biochemical variability of complete and lipid extracted Chlorella species (application for Artemia franciscana feeding). Rend. Fis. Acc. Lincei. 27: 761-774.
11.
Feng Y., Li C., Zhang D. (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technol. 102(1): 101-105.
12.
Folch J., Lees M., Sloane-Stanley G. (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biochem. 226(1): 497-509.
13.
Gouveia L., Oliveira A. (2009) Microalgae as a raw material for biofuels production. Ind. Microbiol. Biotechnol. 36: 269-274.
14.
Gouveia L., Marques A., da Silva T., Reis A. (2009) Neochlorisoleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. Ind. Microbiol. Biotechnol. 36: 821e6.
15.
Guillard R., Ryther J. (1962) Studies of marine planktonic diatoms: I. Cyclotella nanaHustedt, and detonulaconfervacea (cleve) gran. Can. J. Microbiol. 8(2): 229-239.
16.
Halder P. (2011) Bioenergy knowledge, perceptions, and attitudes among young citizens – from cross-national surveys to conceptual model. Dissertationes Forestales 135. 39 p. Available at:
http://www.metla.fi/dissertati....
17.
Hossain S., Salleh A., Boyce A., Chowdhury P., Naqiuddin M. (2008) Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. Biotech. 4(3): 250-254.
18.
Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A. (2008) Microalgal triacylglycerols as feedstock for biofuel production: Perspectives and advances. Plant J. 54: 621-639.
19.
Huang Y., Zhang D., Xue S., Wang M., Cong W. (2016) The potential of microalgae lipids for edible oil production. Appl. Biochem. Biotechnol. 180: 438-451; doi: 10.1007/s12010- 016-2108-6.
20.
Ilavarasi A., Mubarakali D., Praveenkumar R., Baldev E., Thajuddin N. (2011) Optimization of various growth media to freshwater microalgae for biomass production. Biotechnology 10: 540-545.
21.
Illman A., Scragg A., Shales S. (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 27: 631-635.
22.
Knothe G. (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Proces. Technol. 86(10): 1059-1070.
23.
Kumar M., Sharma M. (2014) Potential assessment of microalgal oils for biodiesel production: A review. J. Mater. Environ. Sci. 5(3): 757-766.
24.
Li T., Xu J., Wu H., Wang G., Dai S., Fan J., He H., Xiang W. (2016) A saponification method for chlorophyll removal from microalgae biomass as oil feedstock. Mar. Drugs 14: 162-181; doi: 10.3390/md14090162.
25.
Muthukumar A., Elayaraja S., Ajithkumar T., Kumaresan S., Balasubramanian T. (2012) Biodiesel production from marine microalgae Chlorella marina and Nannochloropsis salina. J. Petrol. Technol. Altern. Fuels 3: 58-62.
26.
Nichols H. (1973) Growth media – freshwater. [in:] Handbook of phycological methods: culture methods and growth measurements. Ed. Stein J.R., Cambridge University Press: pp. 7-24.
27.
Nigam S., Rai M., Sharma R. (2011) Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. Am. J. Biochem. Biotechnol. 7(3): 124e9.
28.
Okpuzor J., Okochi V., Ogbunuga A., Ogbonnia S., Fagbayi T., Obidiegwu C. (2009) Estimation of cholesterol level in different brands of vegetable oils. Pak. J. Nutr. 8(1): 57-62.
29.
O’Neil G., Culler A., Williams J., Burlow N., Gilbert G., Carmichael C., Nelson R., Swarthout R., Reddy C. (2015) Production of jet fuel range hydrocarbons as a co-product of algal biodiesel by butenolysis of long-chain alkenones. Energ. Fuel 29: 922-930.
30.
Ota S., Oshima K., Yamazaki T., Kim S., Yu Z., Yoshihara1 M., (2016) Highly efficient lipid production in the green alga Parachlorella kessleri: draft genome and transcriptome endorsed by whole-cell 3D ultrastructure. Biotechnol. Biofuels 9: 13; doi: 10.1186/s13068-016-0424-2.
31.
Pearson D. (1981) The chemical analysis of food. Churchill Publishing, London: 580-581.
32.
Purkayastha J., Bora A., Gogoi H., Singh L. (2017) Growth of high oil yielding green alga Chlorella ellipsoidea in diverse autotrophic media, effect on its constituents. Algal Res. 21: 81-88.
33.
Radwan S. (1991) Sources of C20-polyunsaturated fatty acids for biotechnological use. Appl. Microbiol. Biotechnol. 35: 421-430.
34.
Raj M., Kandasamy M. (2012) Tamanu oil, an alternative fuel for variable compression ratio engine. Int. J. Energy. Env. Eng. 3: 18-25.
35.
Rasoul-Amini S., Montazeri-Najafabady N., Mobasher M., Hoseini-Alhashemi S., Ghasemi Y. (2011) Chlorella sp.: a new strain with highly saturated fatty acids for biodiesel production in bubble-column photobioreactor. Appl. Energ. 88(10): 3354-3356.
36.
Reddy H., Muppaneni T., Sun Y., Li Y., Ponnusamy S., Patil P., Cooke P. (2014) Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel 133: 73-81.
37.
Renita A., Sreedhar N., Peter M. (2014) Optimization of algal methyl esters using RSM and evaluation of biodiesel storage characteristics. Bioresour. Bioprocess. 1: 1-19.
38.
Rodolfi L., Zittelli G., Bassi N., Padovani G., Biondi N., Bonini G., et al. (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102(1): 100-112.
39.
Satyanarayana K., Mariano A., Vargas J. (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int. J. Energ. Res. 35: 291-311.
40.
Scarsella M., Parisi P., D’Urso A., De Filippis P., Opoka J., Bravi M., (2009) Achievements and perspectives in hetero- and mixotrophic culturing of microalgae. Chem. Eng. Transac. 17: 1065-1070.
41.
Selvarajan R., Felföldi T., Tauber T., Sanniyasi E. (2015) Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda lakes for biofuel production. Energies 8: 7502-7521; doi: 10.3390/ en8077502.
42.
Sharma A., Sahoo P., Singhal S. (2015) Feasibility of biodiesel production from Chlorella vulgaris grown in flat plate photobioreactor under outdoor conditions. Int. J. Chem. Tech. Res. 8(6): 671-678.
43.
Sharma K., Schuhmann H., Schenk P. (2012) High lipid induction in microalgae for biodiesel production. Energies 5(5): 1532-1553.
44.
Spolaore P., Joannis-Cassan C., Duran E., Isambert A. (2006) Commercial applications of microalgae. J. Biosci. Bioeng. 101(2): 87-96.
45.
Sudha K., Shalma S., Naveena B., Prakash S. (2013) Effect of nitrogen concentration on growth and lipid content of Chlorella marina and Dunelliallasalina for biodiesel production. Int. J. Int. Sci. Inn. Tech. 2(3): 28-32.
46.
Vaičiulytė S., Padovani G., Kostkevičienė J., Carlozzi P. (2014) Batch growth of Chlorella vulgaris CCALA 896 versus semi-continuous regimen for enhancing oil-rich biomass productivity. Energies 7: 3840-3857; doi: 10.3390/ en7063840.
47.
Whyte L., Hawari J., Zhou E., Bourbonniere L., Inniss W., Greer C. (1998) Biodegradation of variable-chain length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol. 64(7): 2578-2584.
48.
Wu L., Chen P., Huang A., Lee C. (2012) The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresource Technol. 113: 14-18.
49.
Wu H. (2001) Identification of Chlorella spp. isolates using ribosomal DNA sequences. Bot. Bull. Acad. Sinica 42: 115-121.
50.
Yao L., Gerde J., Lee S-L., Wang T., Harrata K. (2015) Microalgae lipid characterization. J. Agric. Food. Chem. 63: 1773-1787.
51.
Zhu L.,Takala J., Hiltunen E., Wang Z. ( 2013) Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production. Bioresour. Technol. 144: 14-20.