REVIEW PAPER
A review on Dickeya solani, a new pathogenic bacterium causing loss in potato yield in Europe
 
More details
Hide details
1
Department of Biotechnology, University of Gdańsk, Gdańsk, Poland
 
 
Submission date: 2016-01-05
 
 
Final revision date: 2016-03-13
 
 
Acceptance date: 2016-03-21
 
 
Publication date: 2016-07-20
 
 
BioTechnologia 2016;97(2):109-127
 
KEYWORDS
TOPICS
ABSTRACT
A pectinolytic bacteria of the genera Dickeya and a Pectobacterium (formerly, pectinolytic Erwinia ) are the two causal agents of blackleg and soft rot diseases of potato and soft rot of other economically important vegetables and ornamental plants. Dickeya and Pectobacterium are in a group of top ten bacterial pathogens causing great damage and important economic losses of different crops. Potato yield reduction caused by Dickeya species has significantly increased in recent years. These bacteria have been frequently and increasingly isolated from diseased potato plants in Poland, Finland, France, the Netherlands, Switzerland, and other European countries, as well as Israel. Until the end of the last century, the only species of Dickeya genus that had caused disease symptoms on potato plants in Europe was Dickeya dianthicola. According to our current knowledge, since the beginning of the 21st century, bacteria showing characteristics typical of Dickeya solani have been isolated from potato in Europe. In Poland, they were isolated for the first time in 2005. Yet, it was only in 2014 that the D. solani species was established. Recent results indicate that D. solani strains can efficiently infect potato and cause disease symptoms in temperate climate. D. solani strains are considered to be more aggressive than other blackleg-causing bacteria. There is a need for intense research on the pathogenicity of D. solani, not only because it is fast spreading across Europe or because of its better adaptation to various climatic conditions, but also because of the lack of efficient means to control the pectinolytic bacteria during plant vegetation, transport of the potato tubers, and their storage.
REFERENCES (127)
1.
Antunez-Lamas M., Cabrera-Ordonez E., Lopez-col E., Raposo R., Trelles-Salazar O., et al. (2009a) Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937). Microbiology 155: 434-442.
 
2.
Antunez-Lamas M., Cabrera E., Lopez-Solanilla E., Solano R., Gonzalez-Melendi P., et al. (2009b) Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues. Mol. Microbiol. 74: 662-671.
 
3.
Andersson R.A., Eriksson A.R., Heikinheimo R., Mäe A., Pirhonen M., Kõiv V., Hyytiäinen H., Tuikkala A., Palva E.T. (2000) Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR (Ecc). Mol. Plant Microbe Inter. 13: 384-393.
 
4.
Barras F., Thurn K.K., Chatterjee A.K. (1987) Resolution of four pectate lyase structural genes of Erwinia chrysanthemi (EC16) and characterization of the enzymes produced in Escherichia coli. Mol. Gen. Genet. 209: 319-325.
 
5.
Barras F., Van Gijsegem F., Chatterjee A.K. (1994) Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu. Rev. Phytopathol. 32: 201-234.
 
6.
Bell K.S., Sebaihia M., Pritchard L., Holden M.T.G., Hyman L.J., Holeva M.C., Thomson N.R., Bentley S.D., Churcher L.J.C., Mungall K. et al. (2004) Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc. Natl. Acad. Sci. USA 101: 11105-11110.
 
7.
Bertheau Y., Madgidi-Hervan E., Kotoujansky A., Nguyen-The C., Andro T., et al. (1984) Detection of depolymerase isoenzymes after electrophoresis or electrofocusing, or in titration curves. Anal. Biochem. 139: 383-389.
 
8.
Bhandari V., Naushad H.S., Gupta R.S. (2012) Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. Front Cell Infect. Microbiol. 2: 98.
 
9.
Boccara M., Aymeric J.L., Camus C. (1994) Role of endoglucanases in Erwinia chrysanthemi 3937 virulence on Saintpaulia ionantha. J. Bacteriol. 176: 1524-1526.
 
10.
Brady C.L., Cleenwerck I., Denman S., Venter S.N., Rodriguez-Palenzuela P., Coutinho T.A., De Vos P. (2012) Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification.
 
11.
of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. Inter. J. System. Evol. Microbiol. 62: 1592-1602.
 
12.
Brierley J., Lees A., Hilton A., Wale S., Peters J., Elphinstone J., Boonham N. (2008) Improving decision making for the management of potato diseases using real-time diagnostics. Potato Council Final Report, 253.
 
13.
Castillo A., Reverchon S. (1997) Characterization of the pecT control region from Erwinia chrysanthemi 3937. J. Bacteriol. 179: 4909-4918.
 
14.
Charkowski A., (2009) Decaying signals: will understanding bacterial-plant communications lead to control of soft rot. Curr. Opin. Biotech. 20: 1-7.
 
15.
Charkowski A., Blanco C., Condemine. G, Expert D., Franza T., Hayes C., Hugouvieux-Cotte-Pattat N., López Solanilla E., Low D., Moleleki L. et al. (2012) The role of secretion systems and small molecules in soft-rot enterobacteriaceae pathogenicity. Ann. Rev. Phytopathol. 50: 425-449.
 
16.
Chen X.F., Zhang H.L., Chen J. (2015) First report of Dickeya solani causing soft rot in imported bulbs of Hyacinthus orientalis in China. Plant Dis. 99: 155.
 
17.
Christie P.J., Cascales E. (2005) Structural and dynamic properties of bacterial type IV secretion systems (review). Mol. Mem. Biol. 22: 51-61.
 
18.
Condemine G., Castillo A., Passeri F., Enard C. (1999) The PecT repressor coregulates synthesis of exopolysaccharides and virulence factors in Erwinia chrysanthemi. Mol. Plant Microbe Inter. 12: 45-52.
 
19.
Czajkowski R., de Boer W.J., Velvis H., van derWolf J.M. (2010) Systemic colonization of potato plants by soilborne, GFP-tagged strain of Dickeya sp. biovar 3. Phytopathology 100: 134-142.
 
20.
Czajkowski R., Perombelon M.C.M., van Veen J.A., van der Wolf J.M. (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol. 60: 999-1013.
 
21.
Czajkowski R., de Boer W.J., van der Zouwen P.S., Kastelein P., Jafra S., de Haan E.G., van den Bovenkamp G.W., van der Wolf J.M. (2013) Virulence of ‘Dickeya solani’ and Dickeya dianthicola biovar-1 and -7 strains on potato (Solanum tuberosum). Plant Pathol. 62(3): 597-610.
 
22.
Czajkowski R. Ozymko Z., de Jager V., Siwińska J., Smolarska A., Ossowicki A., Narajczyk M., Łojkowska E. (2015) Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages φPD10.3 and φPD23.1 infecting pectolytic Pectobacterium spp. and Dickeya spp. PLOS One, doi: 10.137.
 
23.
Czajkowski R., Pérombelon M. C. M., Jafra S., Łojkowska E., Potrykus M., van der Wolf J. M., Śledź, W. (2015). Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. Ann. App. Biol. 166: 18-38.
 
24.
Dahler G.S., Barras F., Keen N.T. (1990) Cloning of genes encoding extracellular metalloproteases from Erwinia chrysanthemi EC16. J. Bacteriol. 172: 5803-5815.
 
25.
Darrasse A., Priou S., Kotoujansky A., Bertheau Y. (1994) PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases. Appl. Environ. Microbiol. 60: 1437-1443.
 
26.
Degefu Y., Potrykus M., Golanowska M., Virtanen E., Łojkowska E. (2013) A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in North Finland. Ann. App. Biol. 162: 231-241.
 
27.
Dellagi A., Rigault M., Segond D., Roux C., Kraepiel Y., Cellier F., Briat J.F., Gaymard F., Expert D. (2005) Siderophoremediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection. Plant J. 43: 262-272.
 
28.
Delepelaire P., Wandersman C. (1989) Protease secretion by Erwinia chrysanthemi. Proteases B and C are synthesized and secreted as zymogens without a signal peptide. J. Biol. Chem. 264: 9083-9089.
 
29.
Delepelaire P., Wandersman C. (1990) Protein secretion in Gram-negative bacteria. The extracellular metalloprotease B from Erwinia chrysanthemi contains a C-terminal secretion signal analogous to that of Escherichia coli alphahemolysin. J. Biol. Chem. 265: 17118-17125.
 
30.
Elphinstone J. (1987) Soft Rot and Blackleg of Potato. Technical Information Bulletin 21, International Potato Center.
 
31.
English G., Byron O., Cianfanelli F.R., Prescott A., Coulthurst S. (2014) Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. Biochem. J. 461: 291-304.
 
32.
Franza T., Mahe B., Expert D. (2005) Erwinia chrysanthemi requires a second iron transport route dependent on the siderophore achromobactin for extracellular growth and plant infection. Mol. Microbiol. 55: 261-275.
 
33.
Franza T., Expert D. (2013) Role of iron homeostasis in the virulence of phytopathogenic bacteria: an ‘a la carte’ menu. Mol. Plant Pathol. 14: 429-438.
 
34.
Gao B., Gupta R.S. (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol. Mol. Biol Rev. 76: 66-112.
 
35.
Gardan L., Gouy C.., Christen R., Samson R. (2003) Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 53: 381-391.
 
36.
Garlant L., Koskinen P., Rouhiainen L., Laine P., Paulin L., Auvinen P., Holm L., Pirhonen M. (2013) Genome sequence of Dickeya solani, a new soft rot pathogen of potato, suggests its emergence may be related to a novel combination of non-ribosomal peptide/polyketide synthetase clusters. Diversity 5: 824-842.
 
37.
Ghigo J.M., Wandersman C. (1992) Cloning, nucleotide sequence and characterization of the gene encoding the Erwinia chrysanthemi B374 PrtA metalloprotease: a third metalloprotease secreted via a C-terminal secretion signal. Mol. Gen. Genet. 236: 135-144.
 
38.
Glasner J.D., Yang C.H., Reverchon S., Hugouvieux-Cotte- Pattat N., Condemine G., Bohin J.P., Van Gijsegem F., Yang S., Franza T., Expert D. et al. (2011) Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937. J. Bacteriol. 193: 2076-2077.
 
39.
Golanowska M., Galardini M., Bazzicalupo M., Hugouvieux- Cotte-Pattat N., Mengoni A., Potrykus M., Sławiak M., Łojkowska E. (2015) Draft genome sequence of a highly virulent strain of the plant pathogen Dickeya solani, IFB0099. Gen. Announ. 3(2): e00109-115.
 
40.
Grenier A.M., Duport G., Pagès S., Condemine G., Rahbé Y. (2006) The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid. Appl. Environ. Microbiol. 72: 1956-1965.
 
41.
Grijpstra J., Arenas J., Rutten L.,Tommassen J. (2013) Autotransporter secretion: varying on a theme. Res. Microbiol. 164: 562-582.
 
42.
Gupta R.S. (2010) Applications of conserved indels for understanding microbial phylogeny. [in:] Molecular Phylogeny of Microorganisms. Ed. A. Oren, R.T. Papke. Norwich: Caister Academic Press: 135-150.
 
43.
Hauben L., Moore E.R.B., Vauterin L., Steenackers M., Mergaert J., et al. (1998) Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 21: 384-397.
 
44.
Hélias V., Hamon P., Huchet E., van der Wolf J.M., Andrivon D. (2012) Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol. 61: 339-345.
 
45.
Heilbronn J., Lyon, G.D. (1990) The ineffectuality of potato protease inhibitor on the extracellular protease from Erwinia carotovora subsp. carotovora. J. App. Bacteriol. 69: 25-29.
 
46.
Holeva M.C., Bell K.S., Hyman L.J., Avrova A.O., Whisson S.C., Birch P.R.J., Toth I.K., (2004) Use of a pooled transposon mutation grid to demonstrate roles in disease development for Erwinia carotovora subsp. atroseptica putative type III secreted effector (DspE/A) and helper (HrpN) proteins. Mol. Plant Microbe Inter. 17: 943-950.
 
47.
Hommais F., Oger-Desfeux C., Van Gijsegem F., Castang S., Ligori S., Expert D., Nasser W., Reverchon S. (2008) PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937. J. Bacteriol. 190: 7508-7522.
 
48.
Hugouvieux-Cotte-Pattat N., Condemine G., Nasser W., Reverchon R. (1996) Regulation of pectinolysis in Erwinia chrysanthemi. Ann. Rev. Microbiol. 50: 213-257.
 
49.
Hugouvieux-Cotte-Pattat N., Condemine G., Shevchik V.E. (2014) Bacterial pectate lyases, structural and functional diversity. Environ. Microbial. Rep. 6: 427-440.
 
50.
Jafra S., Figura I., Hugouvieux-Cotte-Pattat N., Łojkowska E. (1999) Expression of Erwinia chrysanthemi pectinase genes pelI, pelL, and pelZ during infection of potato tubers. Mol. Plant-Microbe Inter. 12: 845-851.
 
51.
Khayi S., Mondy S., Beury-Cirou A., Moumni M., Hélias V., Faure D. (2014) Genome sequence of the emerging plant pathogen Dickeya solani strain RNS 08.23. 3.1 A. Gen. Announ. 2: 1270-1273.
 
52.
Kim H.S., Thammarat P., Lommel S.A., Hogan C.S., Charkowski A.O. (2011) Pectobacterium carotovorum elicits plant cell death with DspE/F, but does not suppress callose or induce expression of plant genes early in plant-microbe interactions. Mol. Plant Microbe Inter. 24: 773-786.
 
53.
Kotoujansky A., Lemattre M., Boistard P. (1982) Utilization of a thermosensitive episome bearing transposon TN10 to isolate Hfr donor strains of Erwinia carotovora subsp. chrysanthemi. J. Bacteriol. 150: 122-131.
 
54.
Kyöstiö S.R.M., Cramer C.L., Lacy, G.H. (1991) Erwinia carotovora subsp. carotovora extracellular protease: characterisation and nucleotide sequence of the gene. J. Bacteriol. 173: 6537-6546.
 
55.
Laurila J., Ahola V., Lehtinen A., Joutsjoki T., Hannukkala A., Rahkonen A., Pirhonen M. (2008) Characterization of Dickeya strains isolated from potato and river water samples in Finland. Eur. J. Plant Pathol. 122: 213-225.
 
56.
Laurilla J., Hannukkala A., Nykyri J., Pasanen M., Hélias V., Garlant L., Pirhonen M. (2010) Symptoms and yield reduction caused by Dickeya spp. strains isolated from potato and river water in Finland. Eur. J. Plant Pathol. 126: 249-262.
 
57.
Lee Y.A., Yu C.P. (2005) A differential medium for the isolation and rapid identification of a plant soft rot pathogen, Erwinia chrysanthemi. J. Microbiol. Meth. 64: 200-206.
 
58.
Lelliott R.A., Dickey R.S. (1984) Genus VII. Erwinia. Bergey’s Man. System. Bacteriol. 1: 469-476.
 
59.
Leo J.C., Grin I., Linke D. (2012) Type V secretion: mechanism( s) of autotransport through the bacterial outer membrane. Philos. Trans. R. Soc. Lond. B 367: 1088-1101.
 
60.
Lerat E., Daubin V., Ochman H., Moran N.A. (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol. 3(5): e130.
 
61.
Letoffe S., Delepelaire P., Wandersman C. (1989) Characterization of a protein inhibitor of extracellular proteases produced by Erwinia chrysanthemi. Mol. Microbiol. 3: 79-86.
 
62.
Letoffe S., Delepelaire P., Wandersman C. (1990) Protease secretion by Erwinia chrysanthemi: the specific secretion functions are analogous to those of Escherichia coli alphahaemolysin. EMBO J. 9: 1375.
 
63.
Linhartova I., Bumba L, Mas2n J., Basler M., Osicka R., et al. (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34: 1076-1012.
 
64.
Liu H., Coulthurst S.J., Pritchard L., Hedley P.E., Ravensdale M., et al. (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PloS Pathogens 20: e1000093.
 
65.
Łojkowska E., Masclaux C., Boccara M., Robert-Baudouy J., Hugouvieux-Cotte- Pattat N. (1995) Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937. Mol. Microbiol. 16: 1183-1195.
 
66.
Łojkowska E., Potrykus M., Sławiak M. (2010) Molecular characterization and pathogenicity of Dickeya strains isolated recently from potato plants in Poland. [in:] Proceedings of the 12th International Conference on Plant Pathogenic Bacteria, 7-11 June 2010, St. Denis, Reunion, 158.
 
67.
Ma B., Hibbing M.E., Kim H.S., Reedy R.M., Yedidia I., et al. (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97: 1150-1163.
 
68.
Mansfield J., Genin S., Magori S., Citovsky V., Sriariyanum M., Ronald P., Dow M., Verdier V., Beer S.V., Machado M.A., Toth I., Salmond G., Foster G.D. (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13: 614-629.
 
69.
Marits R., Tshuikina M., Pirhonen M., Laasik E., Mae A. (2002) Regulation of the expression of prtW::gusA fusions in Erwinia carotovora subsp. carotovora. Microbiology 148: 835-842.
 
70.
Mattinen L., Somervuo P., Nykyri J., Nissinen R., Kouvonen P., Corthals G., Auvinen P., Aittamaa M., Valkonen J.P., Pirhonen M. (2008) Microarray profiling of host-extractinduced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. Microbiology 154: 2387-2396.
 
71.
McMillan G.P., Barrett A.M., Perombelon M.C.M. (1994) An isoelectric focusing study of the effect of methyl esterified pectic substances on the production of extracellular pectin isoenzymes by soft rot Erwinia spp. J. App. Bacteriol. 77: 175-184.
 
72.
Mhedbi-Hajri N., Malfatti P., Pedron J., Gaubert S., Reverchon S., Van Gijsegem F. (2011) PecS is an important player in the regulatory network governing the coordinated expression of virulence genes during the interaction between Dickeya dadantii 3937 and plants. Environ. Microbiol. 13: 2901-2914.
 
73.
Nasser W., Reverchon S., Vedel R., Boccara M. (2005) PecS and PecT corregulate the synthesis of HrpN and pectate lyases, two virulence determinants in Erwinia chrysanthemi 3937. Mol. Plant Microbe Inter. 18: 1205-1214.
 
74.
Nasser W., Dorel C., Wawrzyniak J., Van Gijsegem F., Groleau M.C., Déziel E., Reverchon S. (2013) Vfm a new quorum sensing system controls the virulence of Dickeya dadantii. Environ. Microbiol. 15: 865-880.
 
75.
Nguyen H.A., Kaneko J., Kamio Y. (2002) Temperature-dependent production of carotovoricin Er and pectin lyase in phytopathogenic Erwinia carotovora subsp. carotovora Er. Biosci. Biotech. Biochem. 66: 444-447.
 
76.
Nykyri J., Niemi O., Koskinen P., Nokso-Koivisto J., Pasanen M., et al. (2012) Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8(11): e1003013.
 
77.
Nykyri J., Fang X., Dorati F., Bakr R., Pasanen M., Niemi O., Pirhonen M. (2014) Evidence that nematodes may vector the soft rot causing enterobacterial phytopathogens. Plant Pathol. 63: 747-757.
 
78.
Palacio-Bielsa A., Cambra M.A., López M.M. (2006) Characterisation of potato isolates of Dickeya chrysanthemi in Spain by a microtitre system for biovar determination. Ann. App. Biol. 148: 157-164.
 
79.
Parkinson N., DeVos P., Pirhonen M., Elphinstone J. (2014) Dickeya aquatica sp. nov., isolated from waterways. Inter. J. System. Evol. Microbiol. 64: 2264-2266.
 
80.
Parkinson N., Pritchard L., Bryant R., Toth I., Elphinstone J. (2015) Epidemiology of Dickeya dianthicola and Dickeya solani in ornamental hosts and potato studied using variable number tandem repeat analysis. Eur. J. Plant Pathol. 141: 63-70.
 
81.
Pédron J., Mondy S., des Essarts Y. R., Van Gijsegem F., Faure D. (2014) Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics 15: 283.
 
82.
Perombelon M.C.M., Kelman A. (1980) Ecology of the soft rot erwinias. Annu. Rev. Phytopathol. 18: 361-387.
 
83.
Perombelon M.C.M. (2002) Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol. 51: 1-12.
 
84.
Potrykus M., Golanowska M., Hugouvieux-Cotte-Pattat N., Łojkowska E. (2014a) Regulators involved in Dickeya solani virulence, genetic conservation, and functional variability. Mol. Plant Microbe Inter. 27: 700-711.
 
85.
Potrykus M., Śledź W., Golanowska M., Sławiak M., Binek A., Motyka A., Żołędowska S., Czajkowski R., Łojkowska E. (2014b) Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Ann. App. Biol. 165: 474-487.
 
86.
Potrykus M., Golanowska M., Śledź W., Żołędowska S., Motyka A., Kołodziejska A., Butrymowicz J., Łojkowska E. (2016) Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Dis. 100: 408-417.
 
87.
Praillet T., Reverchon S., Nasser W. (1997) Mutual control of the PecS/PecM couple, two proteins regulating virulence factor synthesis in Erwinia chrysanthemi. Mol. Microbiol. 24: 803-814.
 
88.
Pritchard L., Humphris S., Saddler G., Parkinson N.M., Bertrand V., Elphinstone J., Toth I. (2012) Detection of phytopathogens of the genus Dickeya using PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathol. 62: 587-596.
 
89.
Pritchard L., Humphris S., Baeyen S., Maes M., Van Vaerenbergh J., Elphinstone J., Saddler G., Toth I. (2013a) Draft genome sequences of four Dickeya dianthicola and four Dickeya solani strains. Genome Announ. 1: 4.
 
90.
Pritchard L., Humphris S., Saddler G., Elphinstone J.G., Pirhonen M., Toth I.K. (2013b) Draft genome sequences of 17 isolates of the plant pathogenic bacterium Dickeya. Gen. Announ. 1: e00978-01013.
 
91.
Pritchard L., Glover R.H., Humphris S., Elphinstone J.G., Toth I.K. (2016) Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal. Meth. 8: 12-24.
 
92.
Py B., Isabelle B.G., Haiech J., Chippaux M., Barras F. (1991) Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His98 and Glu133 residues for catalysis. Protein Engin. 4: 325-333.
 
93.
Py B., Barras F., Harris S., Robson N., Salmond G.P.C. (1998) Extracellular enzymes and their role in Erwinia virulence. [in:] Bacterial Pathogenesis: Methods in Microbiology. Ed. P. Williams, J. Ketley, G. Salmond, London, UK: Academic Press Ltd, 27: 157-168.
 
94.
Reverchon S., Rouanet C., Expert D., Nasser W. (2002) Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J. Bacteriol. 184: 654-665.
 
95.
Reverchon S., Nasser W. (2013) Dickeya ecology, environment sensing and regulation of virulence programme. Environ. Microbiol. Rep. 5: 622-636.
 
96.
Ribot E.M., Fitzgerald C., Kubota K., Swaminathan B., Barrett T.J. (2001) Rapid pulsed-field gel electrophoresis protocol for subtyping of Campylobacter jejuni. J. Clin. Microbiol. 39: 1889-1894.
 
97.
Rojas C.M., Ham J.H., Deng W.-L., Doyle J.J., Collmer A. (2002) HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc. Natl. Acad. Sci. USA 99: 13142-13147.
 
98.
Rouanet C., Reverchon S., Rodionov D.A., Nasser W. (2004) Definition of a consensus DNA-binding site for PecS, a global regulator of virulence gene expression in Erwinia chrysanthemi and identification of new members of the PecS regulon. J. Biol. Chem. 279: 30158-30167.
 
99.
RPD – Report on plant disease, Department of Crop Sciences, University of Illinois at Urbana-Champaign, RPD No. 943 July 1990.
 
100.
Ruhe Z.C., Low D.A., Hayes C.S. (2013) Bacterial contactdependent growth inhibition. Trends Microbiol. 21: 230- 237.
 
101.
Russell A.B., Singh P., Brittnacher M., Bui N.K., Hood R.D., Carl M.A., Agnello D.M., Schwarz S., Goodlett D.R., Vollmer W., Mougous J.D. (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microb. 11: 538-549.
 
102.
Salmond G.P.C. (1994) Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu. Rev. Phytopathol. 32: 181-200.
 
103.
Samson R., Poutier F., Sailly M., Jouan B. (1987) Caractérisation des Erwinia chrysanthemi isolées de Solanum tuberosum et d'autres plantes-hôtes selon les biovars et sérogroupes. EPPO Bulletin 17: 11-16.
 
104.
Samson R., Legendre J.B., Christen R., Saux M.F.L., Achouak W., Gardan L. (2005) Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. As Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. And delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. Inter. J. System. Evol. Microbiol. 55: 1415-1427.
 
105.
Schauer K., Rodionov D.A, de Reuse H. (2008) New substrates for TonB-dependent transport: Do we only see the “tip of the iceberg?” Trends Biochem. Sci. 33: 330-338.
 
106.
Sławiak M., Łojkowska E., van der Wolf (2009a) First report of bacterial soft rot on potato caused by Dickeya spp. (syn. Erwinia chrysanthemi) in Poland. Plant Pathol. 58: 794.
 
107.
Sławiak M., van Beckhoven J.R.C.M., Speksnijder A.G.C.L., Czajkowski R., Grabe G., van der Wolf J.M. (2009b) Biochemical and genetic analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur. J. Plant Pathol. 125: 245-261.
 
108.
Surgey N., Robert-Baudouy J., Condemine G. (1996) The Erwinia chrysanthemi pecT gene regulates pectinase gene expression. J. Bacteriol. 178: 1593-1599.
 
109.
Thomson N.R., Thomas J.D., Salmond G.P. (1999) 12 Virulence Determinants in the Bacterial Phytopathogen Erwinia. Gen. Meth. Diver. Prokaryotes 29: 347.
 
110.
Toth I.K., Bell K.S., Holeva M.C., Birch P.R. (2003) Soft rot erwiniae: from genes to genomes. Mol. Plant Pathol. 4: 17-30.
 
111.
Toth I.K., Pritchard L., Birch P.R. (2006) Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu. Rev. Phytopathol. 44: 305-336.
 
112.
Toth I.K., van der Wolf J.M., Saddler G., Łojkowska E., Hélias V., Pirhonen M., Tsror (Lahkim) L., Elphinstone J.G. (2011) Dickeya species: an emerging problem for potato production in Europe. Plant Pathol. 60: 385-399.
 
113.
Tsor (Lahkim) L., Erlich O., Lebiush S., Hazanovsky M., Zig U. (2009) Assessment of recent outbreaks of Dickeya sp. (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel. Eur. J. Plant Pathol. 123: 311-320.
 
114.
Tsror (Lahkim) L., Ben-Daniel B., Chalupowicz L., van der Wolf J., Lebiush S., Erlich O., Dror O., Barel V., Nijhuis E., Manulis-Sasson S. (2013) Characterization of Dickeya strains isolated from potato grown under hot-climate conditions. Plant Pathol. 62: 1097-1105.
 
115.
van der Wolf J.M., de Haas B.H., van Hoof R., de Haan E.G., van den Bovenkamp G.W. (2014a) Development and evaluation of Taqman assays for the differentiation of Dickeya (sub)species. Eur. J. Plant Pathol.138: 695-709.
 
116.
van der Wolf J.M., Nijhuis E.H., Kowalewska M.J., Saddler G.S., Parkinson N., Elphinstone J.G., Pritchard L., Toth I.K., Łojkowska E., Potrykus M.,Waleron M. (2014b) Dickeya solani sp. nov., a pectinolytic plant pathogenic bacterium isolated from potato (Solanum tuberosum). Inter. J. System. Evol. Microbiol. 64: 768-774.
 
117.
Van Vaerenbergh J., Baeyen S., De Vos P., Maes M. (2012) Sequence diversity in the Dickeya fliC gene: phylogeny of the Dickeya Genus and TaqMan (R) PCR for ‘D. solani’, new Biovar 3 variant on potato in Europe. PLoS One 7: e35738.
 
118.
Versalovic J., Koeuth T., Lupski R. (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nuc. Acid Res. 19: 6823-6831.
 
119.
Versalovic J., Schneider M., De Bruijn F.J., Lupski J.R. (1994) Genomic fingerprinting of bacteria using repetitive sequence- based polymerase chain reaction. Meth. Mol. Cell. Biol. 5: 25-40.
 
120.
Waldee E.L. (1945) Comparative studies of some peritrichous – phytopathogenic bacteria. Iowa State Coll. J. 19: 435- 484.
 
121.
Waleron M., Waleron K., Podhajska A.J., Łojkowska E. (2002a) Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene treatment. Microbiology 148: 583-595.
 
122.
Waleron M., Waleron K., Łojkowska E. (2002b) Genotypic characterisation of the Erwinia genus by PCR-RFLP analysis of rpoS Gene. Plant Prot. Scien. 38: 288-290.
 
123.
Waleron M., Czajkowski R., Waleron K., Łojkowska E. (2013) Restriction fragment length polymorphism-based identification of ‘Dickeya solani’, a new genetic clade of Dickeya spp. J. Plant Pathol. 95: 609-613.
 
124.
Weinert N., Meincke R., Gottwald C., Radl V., Dong X., Schloter M., Berg G., Smalla K. (2010) Effects of genetically modified potatoes with increased zeaxanthin content on the abundance and diversity of rhizobacteria with in vitro antagonistic activity do not exceed natural variability among cultivars. Plant Soil 326: 437-452.
 
125.
Winslow C.E.A., Broadhurst J., Buchanan R.E., Krumwiede C., Rogers L.A., Smith G.H. (1917) The families and genera of the bacteria. Preliminary report of the Committee of the Society of American Bacteriologists: Characterization and Classification of Bacterial Types. J. Bacteriol. 2: 505-566.
 
126.
Whitney J.C., Chou S., Russell A.B., Biboy J., Gardiner T.E., Ferrin M. A., Brittnacher M., Vollmer W., Mougous J.D. (2013) Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector – immunity pair. J. Biol. Chem. 288: 26616-26624.
 
127.
Zimnoch-Guzowska E., Łojkowska E. Perombelon M. (2005) Resistance in Potato to Bacterial Pathogens. [in:] Genetic Improvement of Solanaceous Crops. Vol. 1 Potato. Ed. M.K. Razdan and K. Mattoo. Science Publishers, Inc. Enfield, USA, Plymouth, UK 14: 339-395.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top