Editor's Choice
REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Artificial intelligence (AI) is becoming a transformative force in the life sciences, pushing the boundaries of possibility. Imagine AI automating time-consuming tasks, uncovering hidden patterns in vast datasets, designing proteins in minutes instead of years, and even predicting disease outbreaks before they occur. This review explores the latest AI tools revolutionizing scientific fields, including research and data analysis, healthcare, and tools supporting scientific writing. Beyond data processing, AI is reshaping how scientists draft and share their findings, enhancing processes ranging from literature reviews to citation management. However, with great power comes great responsibility. Are we prepared for this leap? This review delves into the forefront of AI in the life sciences, where innovation meets responsibility.
REFERENCES (197)
1.
7 of the biggest medical breakthroughs in 2023. Available from: https://abcnews.go.com/Health/..., Accessed 11 Dec. 2024.
 
2.
Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A.J., Bambrick J., et al. (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630: 493–500.
 
3.
AGU. For authors. Available from: https://www.agu.org/publicatio..., Accessed 11 Dec. 2024.
 
4.
AI-based tools and technologies for content generation. Available from: https://authorservices.taylora...- policies/defining-authorship-research-paper/, Accessed 11 Dec. 2024.
 
5.
Alabama gets its first uCT® ATLAS. Available from: https://usa.united-imaging.com..., Accessed 11 Dec. 2024.
 
6.
Alachram H., Chereda H., Beißbarth T., Wingender E., Stegmaier P., et al. (2021) Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks. PLoS One. 16: e0258623. 10.1371/journal.pone.0258623.
 
7.
Alimadadi A., Aryal S., Manandhar I., Munroe P.B., Joe B., Cheng X., et al. (2020) Artificial intelligence and machine learning to fight COVID-19. Physiol. Genomics. 52: 200–202.
 
8.
Alivecor. Medical-grade personal ECG device. Available from: https://alivecor.in/, Accessed 11 Dec. 2024.
 
9.
AlphaFold Server. Available from: https://deepmind.google/techno..., Accessed 11 Dec. 2024.
 
10.
Aradhya S., Facio F.M., Metz H., Manders T., Colavin A., Kobayashi Y., Nykamp K., Johnson B., Nussbaum R.L., et al. (2023) Applications of artificial intelligence in clinical laboratory genomics. Am J Med Genet C Semin Med Genet. 193: e32057. 10.1002/ajmg.c.32057.
 
11.
Arefin S. (2024) IDMap: Leveraging AI and data technologies for early cancer detection. Valley Int. J. Digital Libr. 12: 1138–1145.
 
12.
Aro R.P., Lam S., Warkentin M.T, Liu G., Diergaarde B., Yuan J.M., Wilson D.O., Meza R., Myers R., Hung R.J. (2024) MA02.11 validation of the sybil deep learning lung cancer risk prediction model in three independent screening studies. J. Thorac. Oncol. 19: S59–S60.
 
13.
Aslan S. (n.d.) Artificial intelligence in clinical applications for infectious diseases: diagnosis, treatment, and immunization. Exp. Appl. Med. Sci. 5: 95–106.
 
14.
Authorship and AI tools. Available from: https://publicationethics.org/..., Accessed 11 Dec. 2024.
 
15.
Balluet M., Sizaire F., El Habouz Y., Walter T., Pont J., Giroux B., Bouchareb O., Tramier M., Pecreaux J. (2022) Neural network fast-classifies biological images through features selecting to power automated microscopy. J. Microsc. 285: 3–19.
 
16.
Banoei M.M., Rafiepoor H., Zendehdel K., Seyyedsalehi M.S., Nahvijou A., Allameh F., Amanpour S. (2023) Unraveling complex relationships between COVID-19 risk factors using machine learning-based models for predicting mortality of hospitalized patients and identification of high-risk groups: A large retrospective study. Front. Med. 10: 1170331.
 
17.
Bello B., Bundey Y.N., Bhave R., Khotimchenko M., Baran S.W., Chakravarty K., Varshney J (2023) Integrating AI/ML models for patient stratification leveraging omics dataset and clinical biomarkers from COVID-19 patients: a promising approach to personalized medicine. Int. J. Mol. Sci. 24: 6250.
 
18.
BIOiSIM®. Available from: https://www.verisimlife.com/ou..., Accessed 11 Dec. 2024.
 
19.
BioloGPT (2024) Biology AI powered by full paper citations + live biology databases. Available from: https://biologpt.com/about, Accessed 11 Dec. 2024.
 
20.
Bodalal Z., Trebeschi S., Nguyen-Kim T.D.L., Schats W., Beets-Tan R. (2019) Radiogenomics: bridging imaging and genomics. Abdom. Radiol. (NY) 44: 1960–1984.
 
21.
Boiko D.A., MacKnight R., Kline B., Gomes G. (2023) Autonomous chemical research with large language models. Nature 624: 570–578.
 
22.
Bouhouita-Guermech S., Gogognon P., Bélisle-Pipon J.C. (2023) Specific challenges posed by artificial intelligence in research ethics. Front Artif Intell 6: 1149082.
 
23.
Boulesteix A.L., Wright M. (2022) Artificial intelligence in genomics. Hum. Genet. 141: 1449–1450.
 
24.
BrainGlobe. Interoperable Python-based tools for computational neuroanatomy. Available from: https://github.com/brainglobe/..., Accessed 11 Dec. 2024.
 
25.
Callaway E. (2024) Chemistry Nobel goes to developers of AlphaFold AI that predicts protein structures. Nature 634: 525–526.
 
26.
Callaway E. (2025) AI-designed proteins tackle century-old problem – making snake antivenoms. Nature 637: 776.
 
27.
Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. (2020) Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect. 81: 318–356.
 
28.
CelloType. Available from: https://github.com/tanlabcode/..., Accessed 11 Dec. 2024.
 
29.
CellSAM. Available from: https://cellsam.deepcell.org/, Accessed 11 Dec. 2024.
 
30.
Cesaro A., Hoffman S.C., Das P., de la Fuente-Nunez C. (2025) Challenges and applications of artificial intelligence in infectious diseases and antimicrobial resistance. NPJ Antimicrob Resist. 3: 2.
 
31.
ChatPDF (2024). Chat with any PDF. Available from: https://www.chatpdf.com/, Accessed 11 Dec. 2024.
 
32.
Chelli M., Chelli M., Descamps J., Lavoué V., Trojani C., Azar M., Deckert M., Raynier J.L., Clowez G., Boileau P., Ruetsch-Chelli C. (2024) Hallucination Rates and Reference Accuracy of ChatGPT and Bard for Systematic Reviews: Comparative Analysis. J. Med. Internet Res. 26: e53164.
 
33.
Chen Y., Wang B., Zhao Y., Shao X., Wang M., Ma F., Yang L., Nie M., Jin P., Yao K., et al. (2024) Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun. 15: 1657.
 
34.
Cheng J., Novati G., Pan J., Bycroft C., Zemgulyte A., Applebaum T., Pritzel A., Wong L.H., Zielinski M., Sargeant T., et al. (2023) Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381: eadg7492.
 
35.
Chi J., Shu J., Li M., Mudappathi R., Jin Y., Lewis F., Boon A., Qin X., Liu L., Gu H. (2024) Artificial intelligence in metabolomics: a current review. Trends Analyt Chem. 178:: 117852.
 
36.
Chopra H., Annu, Shin D.K., Munjal K., Priyanka, Dhama K., Emran T.B. (2023) Revolutionizing clinical trials: the role of AI in accelerating medical breakthroughs. Int. J. Surg. 109: 4211–4220.
 
37.
Chuang Y.H., Huang S.H., Hung T.M., Lin X.Y., Lee J.Y., Lai W.S., Yang J.M. (2021) Convolutional neural network for human cancer types prediction by integrating protein interaction networks and omics data. Sci. Rep. 11: 20691.
 
38.
Cite This For Me (2024). Available from: https://www.citethisforme.com/, Accessed 11 Dec. 2024.
 
39.
Consensus (2024). AI search engine for research. Available from: https://consensus.app/, Accessed 11 Dec. 2024.
 
40.
ContentDetector.AI. AI Detector | The AI Content Detector | ChatGPT & AI Checker. Available from: https://contentdetector.ai/, Accessed 11 Dec. 2024.
 
41.
Copyscape. Available from: https://www.copyscape.com/, Accessed 11 Dec. 2024.
 
42.
Crossref Similarity Check. Available from: https://www.crossref.org/servi..., Accessed 11 Dec. 2024.
 
43.
Dalal V., Biswas S. (2024) Computational approaches for the discovery of new drugs for inflammatory and infectious diseases. In: Computational Approaches in Biotechnology and Bioinformatics. CRC Press: 1–34.
 
44.
De Marvao A., Dawes T.J., O’Regan D.P. (2020) Artificial intelligence for cardiac imaging-genetics research. Front. Cardiovasc. Med. 6: 195.
 
45.
Dealmakers B. (n.d.) Generative AI platforms drive drug discovery dealmaking.
 
46.
DeepAI text generator. Available from: https://deepai.org/chat/text-g..., Accessed 11 Dec. 2024.
 
47.
Deo R.C. (2015) Machine learning in medicine. Circulation 132: 1920–1930.
 
48.
Deps P.D., Yotsu R., Furriel B.C.R.S., de Oliveira B.D., de Lima S.L., Loureiro R.M. (2024) The potential role of artificial intelligence in the clinical management of Hansen’s disease (leprosy). Front. Med. (Lausanne). 11: 1338598.
 
49.
Dias R., Torkamani A. (2019) Artificial intelligence in clinical and genomic diagnostics. Genome Med. 11: 70.
 
50.
Digitalizing Biopharma R&D. Available from: https://www.genedata.com/, Accessed 11 Dec. 2024.
 
51.
Dolgin E. (2023) ‘Remarkable’ AI tool designs mRNA vaccines that are more potent and stable. Nature. 10.1038/d41586-023-01487-y.
 
52.
Dong S., Boyle A.P. (2019) Predicting functional variants in enhancer and promoter elements using Regulome DB. Hum. Mutat. 40: 1292–1298.
 
53.
Durkee M.S., Abraham R., Clark M.R., Giger M.L. (2021) Artificial intelligence and cellular segmentation in tissue microscopy images. Am. J. Pathol. 191: 1693–1701.
 
54.
Eisenstein M. (2023) AI under the microscope: the algorithms powering the search for cells. Nature 623: 1095–1097.
 
55.
Elicit. AI research tools, free AI tools. Available from: https://easywithai.com/ai-rese..., Accessed 11 Dec. 2024.
 
56.
Elsevier. Generative AI policies for journals. Available from: https://www.elsevier.com/about..., Accessed 11 Dec. 2024.
 
57.
Elysee. AI Action Summit in Paris. Available from: https://www.elysee.fr/en/somme..., Accessed 11 Dec. 2024.
 
58.
EndNote. Available from: https://support.clarivate.com/..., Accessed 11 Dec. 2024.
 
59.
Galal A., Talal M., Moustafa A. (2022) Applications of machine learning in metabolomics: disease modeling and classification. Front. Genet. 13: 1017340.
 
60.
Gao Y., Zhang Y., Hu C., He P., Fu J., Lin F., Liu K., Fu X., Liu R., Sun J., et al. (2023) Distinguishing infectivity in patients with pulmonary tuberculosis using deep learning. Front. Public Health 11: 1247141.
 
61.
Genome-Wide Association Studies (GWAS). Available from: https://www.genome.gov/genetic..., Accessed 11 Dec. 2024.
 
62.
GigaPath: Whole-Slide Foundation Model for Digital Pathology. Available from: https://www.microsoft.com/en-u..., Accessed 11 Dec. 2024.
 
63.
Gorki V., Medhi B. (2024) Use of artificial intelligence in vaccine development against pathogens: challenges and future directions. Medknow 56: 77–79.
 
64.
Gosai S.J., Castro R.I., Fuentes N., Butts J.C., Mouri K., Alasoadura M., Kales S., Nguyen T.T.L., Noche R.R., Rao A.S., et al. (2024) Machine-guided design of cell-type-targeting cis-regulatory elements. Nature 634: 1–10.
 
65.
GPT-2 Output Detector Demo. Available from: https://openai-openai-detector..., Accessed 11 Dec. 2024.
 
66.
GPT-4o. Available from: https://platform.openai.com/do..., Accessed 11 Dec. 2024.
 
67.
Grammarly. Available from: https://www.grammarly.com/, Accessed 11 Dec. 2024.
 
68.
Guo K., Wu M., Soo Z., Yang Y., Zhang Y., Zhang Q., Lin H., Grosser M., Venter D., Zhang G., Lu J. (2023) Artificial intelligence-driven biomedical genomics. Knowledge-Based Syst. 279: 110937.
 
69.
Hassan M., Awan F.M., Naz A., deAndrés-Galiana E.J., Alvarez O., Cernea A., Fernández-Brillet L., Fernández-Martínez J.L., Kloczkowski A. (2022) Innovations in genomics and big data analytics for personalized medicine and health care: A review. Int. J. Mol. Sci. 23: 4645.
 
70.
Health equity and ethical considerations in using artificial intelligence in public health and medicine. Available from: https://www.cdc.gov/pcd/issues..., Accessed 11 Dec. 2024.
 
71.
Heinrich L., Bennett D., Ackerman D., Park W., Bogovic J., Eckstein N., Petruncio A., Clements J., Pang S., Xu C.S., et al. (2021) Whole-cell organelle segmentation in volume electron microscopy. Nature 599: 141–146.
 
72.
Helmy M., Eldaydamony E., Mekky N., Elmogy M., Soliman H. (2022) Predicting Parkinson disease-related genes based on PyFeat and gradient boosted decision tree. Sci. Rep. 12: 10004.
 
73.
Hemingway Editor 3. Available from: https://hemingwayapp.com/deskt..., Accessed 11 Dec. 2024.
 
74.
Hien N.T.K., Tsai F.J., Chang Y.H., Burton W., Phuc P.T., Nguyen P.A., Harnod D., Lam C.S., Lu T.C., Chen C.I., et al. (2024) Unveiling the future of COVID-19 patient care: groundbreaking prediction models for severe outcomes or mortality in hospitalized cases. Front. Med. 10: 1289968.
 
75.
Hsu J.C., Lu C.Y., Hsu M.-H. (2024) Artificial intelligence in infectious diseases: pathogenesis and therapy. Front. Media SA: 1414056.
 
76.
Hu M., Alkhairy S., Lee I., Pillich R.T., Fong D., Smith K., Bachelder R., Ideker T., Pratt D. (2024) Evaluation of large language models for discovery of gene set function. Nat. Methods 22: 1–10.
 
77.
Hutson M. (2024) How AI is being used to accelerate clinical trials. Nature 627: S2–S5.
 
78.
Innovative science-based software. Available from: https://www.simulations-plus.c..., Accessed 11 Dec. 2024.
 
79.
Insitro announces five-year discovery collaboration with Bristol Myers Squibb to discover and develop novel treatments for amyotrophic lateral sclerosis and frontotemporal dementia. Available from: https://www.businesswire.com/n..., Accessed 11 Dec. 2024.
 
80.
Ishaq M., Afsar N.A., Riaz S.U., Abbas M., Mukarram M.S., Ishaq K., Ishaq S., Ali M.S. (2024) Teicoplanin use is associated with rapid clinical improvement in COVID-19 pneumonia. J. Med. Res. Rev. 2: 21–21.
 
81.
Israel U., Marks M., Dilip R., Li Q., Yu C., Laubscher E., Li S., Schwartz M., Pradhan E., Ates A., et al. (2024) A foundation model for cell segmentation. bioRxiv: 2023.11.17.567630.
 
82.
iThenticate. Available from: https://www.ithenticate.com/, Accessed 11 Dec. 2024.
 
83.
JAMA. Instructions for authors. Available from: https://jamanetwork.com/journa..., Accessed 11 Dec. 2024.
 
84.
Jie Z., Zhiying Z., Li L. (2021) A meta-analysis of Watson for Oncology in clinical application. Sci. Rep. 11: 5792.
 
85.
Jones N. (2025) AI hallucinations can’t be stopped — but these techniques can limit their damage. Nature 637: 778-780.
 
86.
Jonsson B.A., Bjornsdottir G., Thorgeirsson T.E., Elling- sen L.M., Bragi Walters G., Gudbjartsson D.F., Stefansson H., Stefansson K., Ulfarsson M.O. (2019) Brain age prediction using deep learning uncovers associated sequence variants. Nat. Commun. 10: 5409.
 
87.
Kirkpatrick P. (2022) Artificial intelligence makes a splash in small-molecule drug discovery. Biopharma Deal 2022: d43747-022.
 
88.
Krishna R., Wang J., Ahern W., Sturmfels P., Venkatesh P., Kalvet I., Lee G.R., Morey-Burrows F.S., Anishchenko I., Humphreys I.R., et al. (2024) Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384: eadl2528.
 
89.
Lee J., Yoon W., Kim S., Kim D., Kim S., So C.H., Kang J. (2020). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 36: 1234–1240.
 
90.
Leveraging real world data to measure disease severity. Available from: https://www.iqvia.com/location..., Accessed 11 Dec. 2024.
 
91.
Li Y., Li Z., Zhang K., Dan R., Jiang S., Zhang Y. (2023) Chatdoctor: A medical chat model fine-tuned on Llama model using medical domain knowledge. arXiv preprint arXiv:2303.14070.
 
92.
Li Z.Q., Xu H.L., Cao H.J., Liu Z.L., Fei Y.T., Liu J.P. (2024) Use of artificial intelligence in peer review among top 100 medical journals. JAMA Netw. Open 7: e2448609.
 
93.
Libbrecht M.W., Noble W.S. (2015) Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16: 321–332.
 
94.
Lin J., Ngiam K.Y. (2023) How data science and AI-based technologies impact genomics. Singapore Med. J. 64: 59–66.
 
95.
Liu Q., Nair R., Huang R., Zhu H., Anderson A., Belen O., Tran V., Chiu R., Higgins K., Chen J., et al. (2024) Using machine learning to determine a suitable patient population for anakinra for the treatment of COVID-19 under the emergency use authorization. Clin. Pharmacol. Ther. 115: 890–895.
 
96.
Low D.M., Bentley K.H., Ghosh S.S. (2020) Automated assessment of psychiatric disorders using speech: a systematic review. Laryngoscope Investig. Otolaryngol. 5: 96–116.
 
97.
Ma J., He Y., Li F., Han L., You C., Wang B., et al. (2024) Segment anything in medical images. Nat. Commun. 15: 654.
 
98.
Making medicines differently. Available from: https://www.insitro.com/, Accessed 11 Dec. 2024.
 
99.
Mamatjan Y., Agnihotri S., Goldenberg A., Tonge P., Mansouri S., Zadeh G., Aldape K. (2017) Molecular signatures for tumor classification: an analysis of the cancer genome atlas data. J. Mol. Diagn. 19: 881–891.
 
100.
Maor E., Perry D., Mevorach D., Taiblum N., Luz Y., Mazin I., Lerman A., Koren G., Shalev V. (2020) Vocal biomarker is associated with hospitalization and mortality among heart failure patients. J. Am. Heart Assoc. 9: e013359.
 
101.
Maška M., Ulman V., Delgado-Rodriguez P., Gómez-de- Mariscal E., Necasová T., Guerrero Peńa F.A., Ren T.I., Meyerowitz E.M., Scherr T., Löffler K., et al. (2023) The cell tracking challenge: 10 years of objective benchmarking. Nat. Methods 20: 1010–1020.
 
102.
Medidata (2024a). Real-time clinical trial analytics: medidata intelligent trials. Available from: https://www.medidata.com/en/cl..., Accessed 11 Dec. 2024.
 
103.
Medidata (2024b). Launch Therapeutics selects Medidata AI Intelligent Trials to accelerate clinical trial development. Available from: https://www.medidata.com/en/ab..., Accessed 11 Dec. 2024.
 
104.
Mendeley. Available from: https://www.mendeley.com/ Accessed 11 Dec. 2024.
 
105.
Merck completes acquisition of Prometheus Biosciences, Inc. Available from: https://www.merck.com/news/mer..., Accessed 11 Dec. 2024.
 
106.
Microsoft Copilot. Available from: https://copilot.microsoft.com/, Accessed 11 Dec. 2024.
 
107.
Microsoft Research AI4Science, Microsoft Azure Quantum (2023) The impact of large language models on scientific discovery: a preliminary study using GPT-4. arXiv preprint arXiv:2311.07361.
 
108.
Midtvedt B., Helgadottir S., Argun A., Pineda J., Midtvedt D., Volpe G. (2021) Quantitative digital microscopy with deep learning. Appl. Phys. Rev. 8.
 
109.
Mills C., Marconett C.N., Lewinger J.P., Mi H., et al. (2023) PEACOCK: a machine learning approach to assess the validity of cell type-specific enhancer-gene regulatory relationships. NPJ Syst. Biol. Appl. 9: 9.
 
110.
Mundt J.C., Vogel A.P., Feltner D.E., Lenderking W.R. (2012) Vocal acoustic biomarkers of depression severity and treatment response. Biol. Psychiatry 72: 580–587.
 
111.
Ng A.Y., Oberije C.J.G., Ambrózay É., Szabó E., Serfozo O., Karpati E., Fox G., Glocker B., Morris E.A., Forrai G., et al. (2023) Prospective implementation of AI-assisted screen reading to improve early detection of breast cancer. Nat. Med. 29: 3044–3049.
 
112.
NHS AI test spots tiny cancers missed by doctors. Available from: https://www.bbc.com/news/techn..., Accessed 11 Dec. 2024.
 
113.
NVIDIA (2024a). NanoString Powered by NVIDIA GPU technology accelerates scientific discovery and the age of spatial biology. Available from: https://nanostring.com/blog/na..., Accessed 11 Dec. 2024.
 
114.
NVIDIA (2024b). Clara for Medical Devices. Available from: https://www.nvidia.com/en-us/c..., Accessed 11 Dec. 2024.
 
115.
NVIDIA DEVELOPER (2024). Advancing cell segmentation and morphology analysis with NVIDIA AI Foundation Model VISTA-2D. Available from: https://developer.nvidia.com/ blog/advancing-cell-segmentation-and-morphology-analysis-with-nvidia-ai-foundation-model-vista-2d/, Accessed 11 Dec. 2024.
 
116.
OpenAI and Los Alamos National Laboratory announce bioscience research partnership. Available from: https://openai.com/index/opena..., Accessed 11 Dec. 2024.
 
117.
Opening new worlds for molecular discovery. Available from: https://www.schrodinger.com/, Accessed 11 Dec. 2024.
 
118.
Originality.ai. Available from: https://originality.ai/ Accessed 11 Dec. 2024.
 
119.
Özgür S., Orman M. (2023) Application of deep learning technique in next-generation sequence experiments. J. Big Data 10: 160.
 
120.
Pang M., Roy T.K., Wu X., Tan K. (2024) CelloType: a unified model for segmentation and classification of tissue images. Nat. Methods 22: 1–10.
 
121.
Pannu J., Gebauer S., McKelvey G. Jr, Cicero A., Inglesby T. (2024) AI could pose pandemic-scale biosecurity risks. Here’s how to make it safer. Nature 635: 808–811.
 
122.
Pareja F., Dopeso H., Wang Y.K., Gazzo A.M., Brown D.N., Banerjee M., Selenica P., Bernhard J.H., Derakhshan F., da Silva E.M., et al. (2024) A genomics-driven artificial intelligence-based model classifies breast invasive lobular carcinoma and discovers CDH1 inactivating mechanisms. Cancer Res. 84: 3478–3489.
 
123.
Parvathaneni V., Gupta V. (2020) Utilizing drug repurposing against COVID-19-efficacy, limitations, and challenges. Life Sci. 259: 118275.
 
124.
Patient engagement. Made better with AI. Available from: https://aicure.com/, Accessed 11 Dec. 2024.
 
125.
PDFgear Copilot (2024). First AI assistant to help people interact with PDFs. Available from: https://www.pdfgear.com/pdf-co..., Accessed 11 Dec.
 
126.
Phoenix WinNonlin™ Software. The industry standard for pharmacokinetic/pharmacodynamic (PK/PD) ana­lysis. Available from: https://www.certara.com/softwa..., Accessed 11 Dec. 2024.
 
127.
Pillsy launches first smart pill bottle and mobile app. Available from: https://www.businesswire.com/n... 20170502005356/en/Pillsy-Launches-First-Smart-Pill-Bottle-and-Mobile-App, Accessed 11 Dec. 2024.
 
128.
PLoS. Artificial intelligence tools and technologies. Available from: https://journals.plos.org/plos..., Accessed 11 Dec. 2024.
 
129.
PNAS. Editorial and journal policies. Available from: https://www.pnas.org/author-ce..., Accessed 11 Dec. 2024.
 
130.
Prometheus Biosciences, Inc. Enters into multi-target strategic collaboration with takeda to develop targeted therapies for inflammatory bowel disease. Available from: https://www.prnewswire.com/new..., Accessed 11 Dec. 2024.
 
131.
Protein designer and structure solvers win chemistry Nobel. Available from: https://www.science.org/conten..., Accessed 11 Dec. 2024.
 
132.
QuillBot. Available from: https://quillbot.com/about, Accessed 11 Dec. 2024.
 
133.
Rajkomar A., Dean J., Kohane I. (2019) Machine learning in medicine. N. Engl. J. Med. 380: 1347–1358.
 
134.
SciSpace (2024) Academic AI Detector. Available from: https:// typeset.io/ai-detector, Accessed 11 Dec. 2024.
 
135.
Takeda. Recursion enters into global licensing agreement with Takeda to develop TAK-733 in hereditary cancer syndrome. Available from: https://www.businesswire.com/n..., Accessed 11 Dec. 2024.
 
136.
Research Rabbit. Reimagine research. Available from: https://www.researchrabbit.ai/, Accessed 11 Dec. 2024.
 
137.
Resnik D.B., Hosseini M. (2024) The ethics of using artificial intelligence in scientific research: new guidance needed for a new tool. AI Ethics. https://doi.org/10.1007/s43681....
 
138.
ReviveMed announces AI-driven metabolomics study with Bristol Myers Squibb. Available from: https://www.businesswire.com/n... 005115/en/ReviveMed- Announces-AI-driven-Metabolomics-Study-with-Bristol-Myers-Squibb, Accessed 11 Dec. 2024.
 
139.
Richardson P.J., Robinson B.W.S., Smith D.P., Stebbing J. (2022) The AI-assisted identification and clinical efficacy of baricitinib in the treatment of COVID-19. Vaccines (Basel) 10: 951.
 
140.
Saama launches industry’s first AI-driven data platform to accelerate clinical development. Available from: https://www.saama.com/news/saa..., Accessed 11 Dec. 2024.
 
141.
Saber-Ayad M., Hammoudeh S., Abu-Gharbieh E., Hamoudi R., Tarazi H., Al-Tel T.H., Hamid Q. (2021) Current status of baricitinib as a repurposed therapy for COVID-19. Pharmaceuticals 14: 680.
 
142.
Sage. Artificial Intelligence Policy. Available from: https://us.sagepub.com/en-us/n..., Accessed 11 Dec. 2024.
 
143.
Saul S., Einav S. (2020) Old drugs for a new virus: repurposed approaches for combating COVID-19. ACS Infect. Dis. 6: 2304–2318.
 
144.
Science Journals. Editorial Policies. https://www.science.org/conten..., Accessed 11 Dec. 2024.
 
145.
SciSpace. Available from: https://scispace.com/, Accessed 11 Dec. 2024.
 
146.
Scite. AI for research. Available from: https://scite.ai/, Accessed 11 Dec. 2024.
 
147.
Scribbr. Available from: https://www.scribbr.com/, Accessed 11 Dec. 2024.
 
148.
Seashore-Ludlow B., Rees M.G., Cheah J.H., Cokol M., Price E.V., Coletti M.E., Jones V., Bodycombe N.E., Soule C.K., Gould J, et al. (2015) Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5: 1210–1223.
 
149.
Segment Anything Model (SAM): a new AI model from Meta AI that can ‘cut out’ any object, in any image, with a single click. Available from: https://segment-anything.com/, Accessed 11 Dec. 2024.
 
150.
Semantic Scholar. A free, AI-powered research tool for scientific lite­rature. Available from: https://www.semanticscholar.or..., Accessed 11 Dec. 2024.
 
151.
Sensyne Health. BMS partners with Sensyne Health for rare blood disease research. Available from: https://pharmatimes.com/news/b..., Accessed 11 Dec. 2024.
 
152.
Serghini A., Portelli S., Ascher D.B. (2023) AI-driven enhancements in drug screening and optimization. In: Computational Drug Discovery and Design. Springer: 269–294.
 
153.
Service R.F. (2020) The game has changed. AI triumphs at protein folding. Science 370: 1144–1145.
 
154.
Shakibfar S., Nyberg F., Li H., Zhao J., Nordeng H.M.E., Sandve G.K.F., Pavlovic M., Hajiebrahimi M., Andersen M., Sessa M. (2023a) Artificial intelligence-driven prediction of COVID-19-related hospitalization and death: a systematic review. Front. Public Health 11: 1183725.
 
155.
Shakibfar S., Zhao J., Li H., Nordeng H., Lupattelli A., Pavlo-vic M., Sandve G.K., Nyberg F., Wettermark B., Hajiebrahimi M., et al. (2023b) Machine learning-driven development of a disease risk score for COVID-19 hospitalization and mortality: a Swedish and Norwegian register-based study. Front. Public Health. 11: 1258840.
 
156.
Shucai H., Heyuan Z. (2024) Research progress of artificial intelligence in prostate cancer diagnosis application. Chin. J. Med. Instrum. 48: 367–372.
 
157.
Siddig E.E., Eltigani H.F., Ahmed A. (2023) The rise of AI: how artificial intelligence is revolutionizing infectious disease control. Ann. Biomed. Eng. 51: 2636–2637.
 
158.
Sidey-Gibbons J.A., Sidey-Gibbons C.J. (2019) Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19: 1–18.
 
159.
Simcyp™ PBPK Simulator. The standard for population-based physiologically based modeling and simulation. Available from: https://www.certara.com/softwa..., Ac­cessed 11 Dec. 2024.
 
160.
Singh A. (2024) Artificial intelligence for drug repurposing against infectious diseases. Artif. Intell. Chem. 2: 100071.
 
161.
Springer Nature. Artificial Intelligence (AI). Available from: https://www.nature.com/nature-..., Accessed 11 Dec. 2024.
 
162.
Srinivasu P.N., Shafi J., Krishna T.B., Sujatha C.N., Praveen S.P., Ijaz M.F. (2022) Using recurrent neural networks for predicting type-2 diabetes from genomic and tabular data. Diagnostics 12: 3067.
 
163.
Stebbing J., Krishnan V., de Bono S., Ottaviani S., Casalini G., Richardson P.J., Monteil V., Lauschke V.M., Mirazimi A., Youhanna S., Tan Y.J., et al. (2020) Mechanism of bari­citinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol. Med. 12: e12697.
 
164.
Steinkellner G., Kroutil W., Gruber K., Gruber C.C. (2025) AlphaFold 3 is great – but it still needs human help to get chemistry righSt. Nature 637: 548.
 
165.
Sun L., Zhang R., Gu Y., Huang L., Jin C. (2024) Application of artificial intelligence in the diagnosis and treatment of colorectal cancer: a bibliometric analysis, 2004–2023. Front. Oncol. 14: 1424044.
 
166.
Swanson K., Wu W., Bulaong N.L., Pak J.E., Zou J. (2024) The Virtual Lab: AI agents design new SARS-CoV-2 nanobodies with experimental validation. bioRxiv: 2024.11.11. 623004.
 
167.
Swedlow J.R., Collinson L. (2021) Nanometre-scale imaging and AI reveal the interior of whole cells. Nature 599: 39–40.
 
168.
Tempus unveils a breakthrough in AI for oncologists: Tempus ONE. Available from: https://www.businesswire.com/n..., Accessed 11 Dec. 2024.
 
169.
The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2024. Available from: https://www.nobelprize.org/pri..., Accessed 11 Dec. 2024.
 
170.
Transforming cancer diagnostics with the power of AI. Available from: https://www.kheironmed.com/, Accessed 11 Dec. 2024.
 
171.
Trinka. Available from: https://www.trinka.ai/, Accessed 11 Dec. 2024.
 
172.
Trusted cancer diagnostics for all. Available from: https://ibex-ai.com/, Accessed 11 Dec. 2024.
 
173.
Turnitin. Available from: https://www.turnitin.com/, Accessed 11 Dec. 2024.
 
174.
Tyson A.L., Rousseau C.V., Niedworok C.J., Keshavarzi S., Tsitoura C., Cossell L., Strom M., Margrie T.W. (2021) A deep learning algorithm for 3D cell detection in whole mouse brain image datasets. PLoS Comput. Biol. 17: e1009074.
 
175.
U.S. Secretary of Commerce Raimondo and U.S. Secretary of State Blinken announce inaugural convening of international network of AI safety institutes in San Francisco. Available from: https://www.commerce.gov/news/..., Accessed 11 Dec. 2024.
 
176.
Underleaf. Available from: https://www.underleaf.ai/, Accessed 11 Dec. 2024.
 
177.
Urbina F., Lentzos F., Invernizzi C., Ekins S. (2022) Dual use of artificial-intelligence-powered drug discovery. Nat. Mach. Intell. 4: 189–191.
 
178.
Usha T., Middha S.K., Kukanur A.A., Shravani R.V., Anupa- ma M.N., Harshitha N., Rahamath A., Kukanuri S.A., Goyal A.K. (2021) Drug repurposing approaches: existing leads for novel threats and drug targets. Curr. Protein Pept. Sci. 22: 251–271.
 
179.
Wang X., Zhao J., Marostica E., Yuan W., Jin J., Zhang J., Li R., Tang H., Wang K., Li Y., et al. (2024) A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 634: 970–978.
 
180.
Web of Science platform. Available from: https://clarivate.com/academia..., Accessed 11 Dec. 2024.
 
181.
Why scientists trust AI too much — and what to do about it. Available from: https://www.nature.com/article..., Accessed 20 Jan. 2025.
 
182.
Winnicki W., Sunder-Plassmann G., Sengölge G., Handisurya A., Herkner H., Kornauth C., Bielesz B., Wagner L., Kikic Z., Pajenda S., et al. (2019) Diagnostic and prognostic value of soluble urokinase-type plasminogen activator receptor (suPAR) in focal segmental glomerulosclerosis and impact of the detection method. Sci. Rep. 9: 13783.
 
183.
WithdrarXiv: A large-scale dataset for retraction study. Available from: https://arxiv.org/abs/2412.037..., Accessed 11 Dec. 2024.
 
184.
Wordvice.AI. Available from: https://wordvice.ai/, Accessed 11 Dec. 2024.
 
185.
Xing L., Ebetino F.H., Boeckman R.K. Jr, Srinivasan V., Tao J., Sawyer T.K., Li J., Yao Z., Boyce B.F. (2020) Targeting anti-cancer agents to bone using bisphosphonates. Bone 138: 115492.
 
186.
Xu C.S., Pang S., Shtengel G., Müller A., Ritter A.T., Hof- fman H.K., Takemura S.Y., Lu Z., Pasolli H.A., Iyer N., Chung J., et al. (2021) An open-access volume electron microscopy atlas of whole cells and tissues. Nature 599: 147–151.
 
187.
Xu H., Usuyama N., Bagga J., Zhang S., Rao R., Naumann T., Wong C., Gero Z., González J., Gu Y., Xu Y., et al. (2024) A whole-slide foundation model for digital pathology from real-world data. Nature 630: 181–188.
 
188.
Xu J., Yang P., Xue S., Sharma B., Sanchez-Martin M., Wang F., Beaty K.A., Dehan E., Parikh B. (2019) Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges, and future perspectives. Hum. Genet. 138: 109–124.
 
189.
Yan J., Du L., Yao X., Shen L. (2016) Machine learning in brain imaging genomics. In: Machine learning and medical imaging. Zhou SK (ed.). Elsevier: 411–434.
 
190.
ZeroGPT. Available from: https://www.zerogpt.com/, Accessed 11 Dec. 2024.
 
191.
Zhang H., Zhang L., Lin A., Xu C., Li Z., Liu K., Liu B., Ma X., Zhao F., Jiang H., et al. (2023) Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621: 396–403.
 
192.
Zhang X., Wang Z., Tang W., Wang X., Liu R., Bao H., Chen X., Wei Y., Wu S., Bao H., et al. (2022) Ultrasensitive and affordable assay for early detection of primary liver cancer using plasma cell-free DNA fragmentomics. Hepatology 76: 317–329.
 
193.
Zhao T., Gu Y., Yang J., Usuyama N., Lee H.H., Kiblawi S., Naumann T., Gao J., Crabtree A., Abel J., et al. (2024) A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities. Nat. Methods 22: 166–176.
 
194.
Zhao Z., Fritsche L.G., Smith J.A., Mukherjee B., Lee S. (2022) The construction of cross-population polygenic risk scores using transfer learning. Am. J. Hum. Genet. 109: 1998–2008.
 
195.
Zhou B., Arthur J.G., Guo H., Kim T., Huang Y., Pattni R., Wang T., Kundu S., Luo J.X.J., Lee H., et al. (2024) Detection and analysis of complex structural variation in human genomes across populations and in brains of donors with psychiatric disorders. Cell 187: 6687–6706.
 
196.
Zhu Y., Meijering E. (2020) Neural architecture search for microscopy cell segmentation. In: Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru: Springer.
 
197.
Zotero. Available from: https://www.zotero.org/, Accessed 11 Dec. 2024.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top