RESEARCH PAPER
Integration of proteomics and bioinformatics in traumatic
brain injury biomarker discovery
More details
Hide details
1
Department of Basic Sciences, Faculty of Physical Therapy, Alryada University for Science and Technology, Egypt
2
Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt
3
Department of Biomedical Equipment, Faculty of Applied Health Sciences Technology, October 6 University, Egypt
4
Faculty of Health Sciences Technology, Borg Al Arab Technological University, Alexandria, Egypt
These authors had equal contribution to this work
Submission date: 2024-08-19
Final revision date: 2025-02-26
Acceptance date: 2025-02-28
Corresponding author
Mohamed E. Hasan
Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
BioTechnologia 2025;106(2):123-150
KEYWORDS
TOPICS
ABSTRACT
Background:
Traumatic brain injury (TBI) is a significant medical crisis with no FDA-approved therapies to improve functional outcomes. Key biomarkers, such as glial fibrillary acidic protein (GFAP), S-100 calcium-binding protein B (S-100B), and ubiquitin C-terminal hydrolase L1 (UCH-L1), are crucial for understanding TBI pathology.
Material and methods:
This study integrates proteomic and bioinformatic approaches to explore established TBI biomarkers’ structural and functional complexities: GFAP, S-100B, and UCH-L1.
Results:
Our comprehensive secondary structure and solvent accessibility assessment, conducted with PredictProtein, confirmed the predominance of alpha-helices in GFAP and S-100B, while UCH-L1 displayed a balanced mix of helices (65.00, 67.39, and 40.81%), beta strands (6.20, 0, and 17.94%), and coils (40.81, 17.94, and 41.26%). AlphaFold and I-TASSER were identified as the best servers for full-length tertiary structure prediction for the three target proteins, based on root-mean-square deviation (RMSD), TM-score, and C-score assessments. Protein motif database scans predicted four, eight, and one protein-binding motifs and two, three, and one post-translational modifications for GFAP, S-100B, and UCH-L1, respectively.
Conclusions:
GFAP’s role in axonal transport and synaptic plasticity was emphasized through motifs such as Filament and DUF1664. S-100B’s association with neuroinflammation and oxidative stress post-TBI was supported by the S-100/ICaBP-type calcium-binding domain. UCH-L1’s dualistic impact on TBI was further clarified by the Peptidase_C12 motif. This approach deepens our comprehension of these biomarkers and paves the way for targeted diagnostics in TBI.
REFERENCES (81)
1.
Adebali O, Ortega DR, Zhulin IB. 2015. CDvist: A web server for identification and visualization of conserved domains in protein sequences. Bioinformatics. 31(9): 1475–1477.
2.
Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG. 2014. SCOP2 prototype: A new approach to protein structure mining. Nucleic Acids Res. 42(D1): D310–D314.
3.
Benkert P, Biasini M, Schwede T. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 27(3): 343–350.
4.
Bhattacharya D, Nowotny J, Cao R, Cheng J. 2016. 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Res. 44(W1): W406–W409.
5.
Bru C, Courcelle E, Carrère S, Beausse Y, Dalmar S, Kahn D. 2005. The ProDom database of protein domain families: More emphasis on 3D. Nucleic Acids Res. 33(Suppl_1): D212–D215.
6.
Cheema U, Fatima T, Bilal M, Nawaz A, Nadeem H, Khalid A. 2024. Traumatic brain injury (TBI): Is there anything we can do? A review. F1000Res. 13: 1264. 10.12688/f1000research.157134.1.
7.
Colovos C, Yeates TO. 1993. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 2(9): 1511–1519.
8.
Combet C, Blanchet C, Geourjon C, Deleage G. 2000. NPS@: Network protein sequence analysis. Trends Biochem Sci. 25(3): 147–150.
9.
Dadas A, Washington J, Diaz-Arrastia R, Janigro D. 2018. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr Dis Treat. 14: 2989–3000. 10.2147/ndt.s125620.
10.
De Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N. 2006. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34(Suppl_2): W362–W365.
11.
Drozdetskiy A, Cole C, Procter J, Barton GJ. 2015. JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 43(W1): W389–W394.
12.
Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol. 7(10): e1002195. 10.1371/journal.pcbi.1002195.
13.
Feig M, Mirjalili V. 2015. Protein structure refinement via molecular-dynamics simulations: What works and what does not? Proteins. 84(Suppl 1): 282–292. 10.1002/prot.24871.
14.
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J. 2014. Pfam: The protein families database. Nucleic Acids Res. 42(D1): D222–D230.
15.
Gayger-Dias V, Vizuete AF, Rodrigues L, Wartchow KM, Bobermin LD, Leite MC, Quincozes-Santos A, Kleindienst A, Goncalves C. 2023. How S100B crosses brain barriers and why it is considered a peripheral marker of brain injury. Exp Biol Med. 248: 2109–2119.
16.
Gogishvili D, Honey MIJ, Verberk IMW, Vermunt L, Hol EM, Teunissen CE, Abeln S. 2024. The GFAP proteoform puzzle: How to advance GFAP as a fluid biomarker in neurological diseases. J Neurochem. 169(1). 10.1111/jnc.16226.
17.
Gupta S, Tsoporis JN, Jia SH, dos Santos CC, Parker TG, Marshall JC. 2021. Toll-like receptors, associated biochemical signaling networks, and S100 ligands. Shock. 56(2): 167–177. 10.1097/SHK.0000000000001704.
18.
Hall N. 2007. Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol. 210(9): 1518–1525.
19.
Hall T. 2001. BioEdit version 5.0.6. North Carolina State University, Department of Microbiology.
20.
Heo L, Park H, Seok C. 2013. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 41(W1): W384–W388.
21.
Holm L, Rosenström P. 2010. Dali server: Conservation mapping in 3D. Nucleic Acids Res. 38(Suppl_2): W545–W549.
22.
Hooft RWW, Vriend G, Sander C, Abola EE. 1996. Errors in protein structures. Nature. 381(6580): 272.
23.
Jisna VA, Jayaraj PB. 2021. Protein structure prediction: Conventional and deep learning perspectives. Protein J. 40: 522–544.
24.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Tunyasuvunakool K, Ronneberger O, Bates R, ídek A, Bridgland A. 2020. AlphaFold 2. Fourteenth Critical Assessment of Techniques for Protein Structure Prediction; DeepMind: London, UK.
25.
Kim DE, Chivian D, Baker D. 2004. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32(Suppl_2): W526–W531.
26.
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 10.1038/nprot.2015.053.
27.
Kleywegt GJ, Jones TA. 1996. Phi/psi-chology: Ramachandran revisited. Structure. 4(12): 1395–1400.
28.
Ko J, Park H, Heo L, Seok C. 2012. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 40(W1): W294–W297. 10.1093/nar/gks493.
29.
Kobeissy FH, Sadasivan S, Oli MW, Robinson G, Larner SF, Zhang Z, Hayes RL, Wang KKW. 2008. Neuroproteomics and systems biology-based discovery of protein biomarkers for traumatic brain injury and clinical validation. Proteomics Clin Appl. 2(10–11): 1467–1483. 10.1002/prca. 200800011.
30.
Kumar TA. 2013. CFSSP: Chou and Fasman secondary structure prediction server. Wide Spectrum. 1(9): 15–19.
31.
Langlois JA, Rutland-Brown W, Wald MM. 2006. The epidemiology and impact of traumatic brain injury: A brief overview. J Head Trauma Rehabil. 21(5).
https://journals.lww.com/headt....
32.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Crystallogr. 26(2): 283–291.
33.
Letunic I, Doerks T, Bork P. 2015. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Res. 43(D1): D257–D260.
34.
Lin K, Simossis VA, Taylor WR, Heringa J. 2005. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics. 21(2): 152–159.
35.
Lüthy R, Bowie JU, Eisenberg D. 1992. Assessment of protein models with three-dimensional profiles. Nature. 356(6364): 83–85.
36.
Maas AIR, Stocchetti N, Bullock R. 2008. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 7(8): 728–741.
37.
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI. 2015. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43(D1): D222–D226.
38.
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derby- shire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR. 2010. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39(Suppl_1): D225–D229.
39.
McGuffin LJ, Bryson K, Jones DT. 2000. The PSIPRED protein structure prediction server. Bioinformatics. 16(4): 404–405.
40.
Michetti F, D’Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. 2019. The S100B story: From biomarker to active factor in neural injury. J Neurochem. 148(2): 168–187. 10.1111/jnc.14574.
41.
Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano Spica V. 2023. The S100B protein: A multifaceted pathogenic factor more than a biomarker. Int J Mol Sci. 24(11): 9605. 10.3390/ijms24119605.
42.
Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S. 2015. The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Res. 43(D1): D213–D221.
43.
Mitchell GJ. 2020. Traumatic brain injury biomarkers glial fibrillary acidic protein/ubiquitin C-terminal hydrolase L1. In: Biomarkers for Traumatic Brain Injury. Elsevier. p. 183–191.
44.
Mondello S, Papa L, Buki A, Bullock MR, Czeiter E, Tor- tella FC, Wang KK, Hayes RL. 2011. Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care. 15(1): 1–10.
45.
Mondello S, Sorinola A, Czeiter E, Vámos Z, Amrein K, Synnot A, Donoghue E, Sándor J, Wang KKW, Diaz- Arrastia R. 2021. Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury: A living systematic review and meta-analysis. J Neurotrauma. 38(8): 1086–1106.
46.
Moreira GG, Cantrelle FX, Quezada A, Carvalho FS, Cristóvão JS, Sengupta U, Puangmalai N, Carapeto AP, Rodrigues M, Cardoso I, Fritz G, Herrera F, Kayed R, Landrieu I, Gomes CM. 2021. Dynamic interactions and Ca2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nat Commun. 12(1): 6292. 10.1038/S41467-021-26584-2.
47.
Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. 2014. Critical assessment of protein structure prediction (CASP) — round X methods. Proteins. 82(Suppl. 1): 1–6.
48.
Obenauer JC, Cantley LC, Yaffe MB. 2003. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31(13): 3635–3641.
49.
Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN, Ameli NJ, Lopez MA, Haeussler CA, Mendez Giordano DI, et al. 2016. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 73(5): 551–560. 10.1001/jamaneurol.2016.0039.
50.
Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Bro- phy GM, Demery JA, Liu MC, Mo J, Akinyi L. 2012. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg. 72(5): 1335–1344.
51.
Puri S, Hsu STD. 2024. Functional dynamics of human ubiquitin C-terminal hydrolases. Front Biophys. 2: 1479898.
52.
Pontius J, Richelle J, Wodak SJ. 1996. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol. 264(1): 121–136.
53.
Posti JP, Hossain I, Takala RSK, Liedes H, Newcombe V, Outtrim J, Katila AJ, Frantzén J, Ala-Seppälä H, Coles JP. 2016. Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 are not specific biomarkers for mild CT-negative traumatic brain injury. J Neurotrauma. 34(7): 1427–1438. 10.1089/neu.2016.4442.
54.
Qiu J, Bernhofer M, Heinzinger M, Kemper S, Norambuena T, Melo F, Rost B. 2020. ProNA2020 predicts protein–DNA, protein–RNA, and protein–protein binding proteins and residues from sequence. J Mol Biol. 432(7): 2428–2443.
55.
Rothermundt M, Peters M, Prehn JH, Arolt V. 2003. S100B in brain damage and neurodegeneration. Microsc Res Tech. 60(1): 614–632.
56.
Shao Z, Zhang Y, Yuan GC, Orkin SH, Waxman DJ. 2012. MAnorm: A robust model for quantitative comparison of ChIP-Seq data sets. Genome Biol. 13: 1–17.
57.
Shuvo MH, Gulfam M, Bhattacharya D. 2021. DeepRefiner: High-accuracy protein structure refinement by deep network calibration. Nucleic Acids Res. 49(W1): W147–W152.
58.
Sigrist CJA, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I. 2012. New and continuing developments at PROSITE. Nucleic Acids Res. 41(D1): D344–D347.
59.
Sillitoe I, Bordin N, Dawson N, Waman VP, Ashford P, Scholes HM, Pang CSM, Woodridge L, Rauer C, Sen N. 2021. CATH: Increased structural coverage of functional space. Nucleic Acids Res. 49(D1): D266–D273.
60.
Sorci G, Bianchi R, Riuzzi F, Tubaro C, Arcuri C, Giambanco I, Donato R. 2010. S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovasc. Psychiatry Neurol. 2010: 1–8.
61.
Smith DH, Johnson VE, Stewart W. 2013. Chronic neuropathologies of single and repetitive TBI: Substrates of dementia? Nat Rev Neurol. 9(4): 211–221.
62.
Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. 2020. QMEANDisCo — distance constraints applied on model quality estimation. Bioinformatics. 36(6): 1765–1771.
63.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P. 2019. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1): D607–D613. 10.1093/nar/gky1131.
64.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 38(7): 3022–3027.
65.
Torrisi M, Kaleel M, Pollastri G. 2019. Deeper profiles and cascaded recurrent and convolutional neural networks for state-of-the-art protein secondary structure prediction. Sci Rep. 9(1): 12374.
66.
Tung CH, Yang JM. 2007. fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies. Nucleic Acids Res. 35(Suppl_2): W438–W443.
67.
Wang S, Li W, Liu S, Xu J. 2016. RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res. 44(W1): W430–W435.
68.
Wang S, Sun S, Li Z, Zhang R, Xu J. 2017. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput Biol. 13(1): e1005324.
69.
Wang Y, Wang J, Li R, Shi Q, Xue Z, Zhang Y. 2017. ThreaDomEx: a unified platform for predicting continuous and discontinuous protein domains by multiple-threading and segment assembly. Nucleic Acids Res. 45(W1): W400–W407.
70.
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46(W1): W296–W303.
71.
Wiederstein M, Sippl MJ. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(Suppl_2): W407–W410.
72.
Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J. 2009. SUPERFAMILY — sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res. 37(Suppl_1): D380–D386.
73.
Wu CH, Yeh LSL, Huang H, Arminski L, Castro-Alvear J, Chen Y, Hu Z, Kourtesis P, Ledley RS, Suzek BE. 2003. The protein information resource. Nucleic Acids Res. 31(1): 345–347.
74.
Xu D, Zhang Y. 2011. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J. 101(10): 2525–2534.
75.
Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. 2010. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta Proteins Proteomics. 1804(4): 996–1010.
https://doi.org/10.1016/ j.bbapap.2010.01.011.
76.
Yu Q, Zhang H, Li Y, Liu C, Wang S, Liao X. 2018. UCH-L1 inhibition suppresses tau aggresome formation during proteasomal impairment. Mol Neurobiol. 55(5): 3812–3821. 10.1007/s12035-017-0558-7.
77.
Zetterberg H, Blennow K. 2016. Fluid biomarkers for mild traumatic brain injury and related conditions. Nat Rev Neurol. 12(10): 563–574.
78.
Zetterberg M, Sjölander A, von Otter M, Palmér MS, Landgren S, Minthon L, Wallin A, Andreasen N, Blennow K, Zetterberg H. 2010. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) S18Y polymorphism in Alzheimer’s disease. Mol Neurodegener. 5: 1–5.
79.
Zhang Y, Skolnick J. 2004. Scoring function for automated assessment of protein structure template quality. Proteins Struct Funct Bioinf. 57(4): 702–710.
80.
Zhang Y, Skolnick J. 2005. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33(7): 2302–2309.
81.
Zhou X, Zheng W, Li Y, Pearce R, Zhang C, Bell EW, Zhang G, Zhang Y. 2022. I-TASSER-MTD: a deep-learning- based platform for multi-domain protein structure and function prediction. Nat Protoc. 17(10): 2326–2353.