REVIEW PAPER
Figure from article: Molecular architecture of...
 
KEYWORDS
TOPICS
ABSTRACT
In this review, I describe recent findings on the molecular architecture and genomic characterization of giant viruses that infect microbial eukaryotes (protists) across diverse ecosystems and ecological niches. Giant viruses are distinguished by their large and complex genomes, which encode a wide range of functions, including protein translation, carbohydrate and lipid metabolism, nitrogen cycling, light assimilation, and key metabolic pathways such as glycolysis and the tricarboxylic acid cycle. Additio­nally, these genomes feature unique genes, often acquired through horizontal gene transfer, that are not found in other viruses and contribute to the viruses’ ability to manipulate host metabolism and evade host defenses. A core set of genes conserved across different families of giant viruses is highlighted, serving as essential components for key life-cycle processes and providing valuable phylogenetic markers. The review also discusses the role of ORFans and virophages in contributing to the genetic diversity and evolutionary adaptation of these viruses. These findings are crucial for understanding the diversity, evolutionary mechanisms, and complex virus–host interactions of giant viruses, as well as for developing more advanced classification systems. Furthermore, the potential biotechnological applications of unique viral genes and pathways are explored, underscoring the importance of ongoing research in this field.
REFERENCES (75)
1.
Abrahão J, Silva L, Silva LS, Khalil JYB, Rodrigues R, Aran- tes T, Assis F, Boratto P, Andrade M, Kroon EG, et al. 2018. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun. 9: 749. https://doi.org/10.1038/s41467....
 
2.
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al. 2019. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. J Eukaryot Microbiol. 66: 4–119. https://doi.org/10.1111/jeu.12....
 
3.
Athira MT, Antony SP. 2023. The Tiny Giants: Overview of giant viruses. Ecol Genet Genom. 29: 100210. https://doi.org/10.1016/j.egg.....
 
4.
Aylward FO, Abrahão JS, Brussaard CPD, Fischer MG, Moniruzzaman M, Ogata H, Suttle CA. 2023. Taxonomic update for giant viruses in the order Imitervirales (phylum Nucleocytoviricota). Arch Virol. 168: 283. https://doi.org/10.1007/s00705....
 
5.
Aylward FO, Moniruzzaman M, Ha AD, Koonin EV. 2021. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol. 19(10): e3001430. https://doi.org/10.1371/journa....
 
6.
Bandaru V, Zhao X, Newton MR, Burrows CJ, Wallace SS. 2007. Human endonuclease VIII-like (NEIL) proteins in the giant DNA Mimivirus. DNA Repair (Amst). 6: 1629–1641. https://doi.org/10.1016/j.dnar....
 
7.
Barik S. 2018. A Family of Novel Cyclophilins, Conserved in the Mimivirus Genus of the Giant DNA Viruses. Comput Struct Biotechnol J. 16: 231–236. https://doi.org/10.1016/ j.csbj.2018.07.001.
 
8.
Bessenay A, Bisio H, Belmudes L, Couté Y, Bertaux L, Cla­verie J, Abergel C, Jeudy S, Legendre M. 2024. Complex transcriptional regulations of a hyperparasitic quadripartite system in giant viruses infecting protists. Nat Commun. 15(1): 8608. https://doi.org/10.1038/s41467....
 
9.
Bhattacharjee AS, Schulz F, Woyke T, Orcutt BN, Martínez Martínez J. 2023. Genomics discovery of giant fungal viruses from subsurface oceanic crustal fluids. ISME Commun. 3: 10. https://doi.org/10.1038/s43705....
 
10.
Blanc-Mathieu R, Dahle H, Hofgaard A, Brandt D, Ban H, Kalinowski J, Ogata H, Sandaa R. 2021. A Persistent Giant Algal Virus, with a Unique Morphology, Encodes an Unprecedented Number of Genes Involved in Energy Metabolism. J Virol. 95: e02446-20. https://doi.org/10.1128/jvi.02....
 
11.
Bosmon T, Abergel C, Claverie JM. 2025. 20 years of research on giant viruses. NPJ Viruses 3: 9. https://doi.org/ 10.1038/s44298-025-00093-1.
 
12.
Brahim Belhaouari D, Pires De Souza GA, Lamb DC, Kelly SL, Goldstone JV, Stegeman JJ, Colson P, La Scola B, Aherfi S. 2022. Metabolic arsenal of giant viruses: Host hijack or self-use? eLlife. 11: e78674. https://doi.org/10.7554/elife. 78674.
 
13.
Brandes N, Linial M. 2019. Giant Viruses – Big Surprises. Viruses. 11(5): 404. https://doi.org/10.3390/v11050....
 
14.
Bremer N, Martin WF, Steel M. 2025. Surprising effects of differential loss in genome evolution: the last-one-out. FEMS Microbiol Lett. 372: fnaf051. https://doi.org/ 10.1093/femsle/fnaf051.
 
15.
Campillo-Balderas JA, Lazcano A, Cottom-Salas W, Jácome R, Becerra A. 2023. Pangenomic Analysis of Nucleo- Cytoplasmic Large DNA Viruses. I: The Phylogenetic Distribution of Conserved Oxygen-Dependent Enzymes Reveals a Capture-Gene Process. J Mol Evol. 91: 647–668. https://doi.org/10.1007/s00239....
 
16.
Chen F, Suttle CA. 1996. Evolutionary Relationships among Large Double-Stranded DNA Viruses That Infect Microalgae and Other Organisms as Inferred from DNA Polymerase Genes. Virology 219(1): 170–178. https://doi.org/ 10.1006/viro.1996.0234.
 
17.
Chen J, Ogata H, Hikida H. 2025. Sputnik virophage disrupts the transcriptional regulation of its host giant virus. J Virol. 99(4): e0019225. https://doi.org/10.1128/jvi.00....
 
18.
Claverie JM, Abergel C. 2018. Mimiviridae: an expanding fa­mily of highly diverse large dsDNA viruses infecting a wide phylogenetic range of aquatic Eukaryotes. Viruses 10: 506. https://doi.org/10.3390/v10090....
 
19.
Claverie JM, Grzela R, Lartigue A, Bernadac A, Nitsche S, Vacelet J, Ogata H, Abergel C. 2009. Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges. J Invertebr Pathol. 101: 172–180. https://doi.org/10.1016/j.jip.....
 
20.
Colson P, Ominami Y, Hisada A, La Scola B, Raoult D. 2019. Giant mimiviruses escape many canonical criteria of the virus definition. Clin Microbiol Infect. 25: 147–154. https://doi.org/10.1016/j.cmi.....
 
21.
Deeg CM, Chow CT, Suttle CA. 2018. The kinetoplastid- infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea. eLife. 7: e33014. https://doi.org/10.7554/eLife.....
 
22.
Dos Santos Silva LK, Rodrigues RAL, Dos Santos Pereira Andrade AC, Hikida H, Andreani J, Levasseur A, La Scola B, Abrahão JS. 2020. Isolation and genomic characterization of a new mimivirus of lineage B from a Brazilian river. Arch Virol. 165: 853–863. https://doi.org/10.1007/s00705....
 
23.
Endo H, Blanc-Mathieu R, Li Y, Salazar G, Henry N, Labadie K, de Vargas C, Sullivan MB, Bowler C, Wincker P, et al. 2020. Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat Ecol Evol. 4: 1639–1649. https://doi.org/10.1038/s41559....
 
24.
Farzad R, Ha AD, Aylward FO. 2022. Diversity and genomics of giant viruses in the North Pacific Subtropical Gyre. Front Microbiol. 13: 1021923. https://doi.org/10.3389/fmicb.....
 
25.
Fischer MG. 2016. Giant viruses come of age. Curr Opin Microbiol. 31: 50–57. https://doi.org/10.1016/j.mib.....
 
26.
Gallot-Lavallée L, Archibald JM. 2020. Evolutionary Biology: Viral Rhodopsins Illuminate Algal Evolution. Curr Biol. 30: R1469–R1471. https://doi.org/10.1016/j.cub.....
 
27.
Gallot-Lavallée L, Blanc G, Claverie JM. 2017. Comparative Genomics of Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae Family. J Virol. 91: e00230-17. https://doi.org/10.1128/jvi.00....
 
28.
Gould SB, Garg SG, Handrich M, Nelson-Sathi S, Gruen- heit N, Tielens AGM, Martin WF. 2019. Adaptation to life on land at high O2via transition from ferredoxin-to NADH-dependent redox balance. Proc R Soc B Biol Sci. 286(1909): 20191491. https://doi.org/10.1098/rspb.2....
 
29.
Ha AD, Aylward FO. 2024. Automated classification of giant virus genomes using a random forest model built on trademark protein families. NPJ Viruses. 2, 9. https://doi.org/10.1038/s44298....
 
30.
Hurwitz BL, Hallam SJ, Sullivan MB. 2013. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14: R123. https://doi.org/10.1186/gb-201....
 
31.
ICTV 2025. Current ICTV Taxonomy Release. https://ictv.global/taxonomy (Accessed: 10.03.2025).
 
32.
Iyer LM, Balaji S, Koonin EV, Aravind L. 2006. Evolutio­- nary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 117: 156–184. https://doi.org/10.1016/j.viru.... 2006.01.009.
 
33.
Johannessen TV, Bratbak G, Larsen A, Ogata H, Egge ES, Edvardsen B, Eikrem W, Sandaa R. 2014. Characterisation of three novel giant viruses reveals huge diversity among viruses infecting Prymnesiales (Haptophyta). Virology 476: 180–188. https://doi.org/10.1016/j.viro....
 
34.
Kalafati E, Papanikolaou E, Marinos E, Anagnou NP, Pappa KI. 2022. Mimiviruses: Giant viruses with novel and intriguing features (Review). Mol Med Rep. 25: 207. https://doi.org/10.3892/mmr.20....
 
35.
Karki S, Moniruzzaman M, Aylward FO. 2021. Comparative genomics and environmental distribution of large dsDNA viruses in the family Asfarviridae. Front Microbiol. 12: 657471. https://doi.org/10.3389/fmicb.....
 
36.
Koonin EV, Dolja VV, Krupovic M. 2015. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology. 479–480: 2–25. https://doi.org/10.1016/j.viro.... 2015.02.039.
 
37.
Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, Kuhn JH. 2020. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. 84: e00061-19. https://doi.org/10.1128/mmbr.0....
 
38.
Koonin EV, Yutin N. 2010. Origin and evolution of eukaryo­tic large nucleo-cytoplasmic DNA viruses. Intervirology. 53(5): 284–292. https://doi.org/10.1159/000312....
 
39.
Koonin EV, Yutin N. 2019. Evolution of the large nucleocytoplasmic DNA viruses of Eukaryotes and convergent origins of viral gigantism. Adv Virus Res. 103: 167–202. https://doi.org/10.1016/bs.aiv....
 
40.
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszew­ski K, Yurchenko V, Lukeš J. 2021. Euglenozoa: taxo­nomy, diversity and ecology, symbioses and viruses. Open Biol. 11: 200407. https://doi.org/10.1098/rsob.2....
 
41.
Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, McInerney JO, Landan G, Martin WF. 2015. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524(7566): 427–432. https://doi.org/10.1038/nature....
 
42.
Ku C. 2021. Giant Virus-Eukaryote Interactions as Ecological and Evolutionary Driving Forces. mSystems 6: 10.1128/msystems.00737-21. https://doi.org/10.1128/msyste.... 00737-21.
 
43.
Ku C, Sheyn U, Sebé-Pedrós A, Ben-Dor S, Schatz D, Tanay A, Rosenwasser S, Vardi A. 2020. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci Adv. 6(21): eaba4137. https://doi.org/10.1126/sciadv....
 
44.
Kukovetz K, Hertel B, Schvarcz CR, Saponaro A, Manthey M, Burk U, Greiner T, Steward GF, Van Etten JL, Moroni A, et al. 2020. A Functional K+ Channel from Tetraselmis Virus 1, a Member of the Mimiviridae. Viruses 12: 1107. https://doi.org/10.3390/v12101....
 
45.
Kyrychenko A, Burkot V, Shcherbatenko I. 2023. Giant DNA Viruses Infecting Unicellular Protists. Mikrobiol Zh. 85: 72–82. https://doi.org/10.15407/micro....
 
46.
La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D. 2003. A giant viruses in amoebae. Science 299: 203. https://doi.org/10.1126/scienc....
 
47.
Lad SB, Upadhyay M, Thorat P, Nair D, Moseley GW, Sriva­stava S, Pradeepkumar PI, Kondabagil K. 2023. Biochemical Reconstitution of the Mimiviral Base Excision Repair Pathway. J Mol Biol. 435: 168–188. https://doi.org/10.1016/j.jmb.....
 
48.
Larsen JB, Larsen A, Bratbak G, Sandaa R. 2008. Phylogenetic Analysis of Members of the Phycodnaviridae Virus Fa­mily, Using Amplified Fragments of the Major Capsid Protein Gene. Appl Environ Microbiol. 74(10): 3048–3057. https://doi.org/10.1128/aem.02....
 
49.
Moniruzzaman M, Gann ER, Wilhelm SW. 2018. Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae. Front Microbiol. 9: 752. https://doi.org/10.3389/fmicb.....
 
50.
Nuri R, Feldmesser E, Fridmann-Sirkis Y, Keren-Shaul H, Nevo R, Minsky A, Reich Z. 2022. Acanthamoeba poly­phaga de novo transcriptome and its dynamics during Mimivirus infection. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2022.0....
 
51.
de Oliveira EG, Carvalho JVRP, Botelho BB, da Costa Filho CA, Henriques LR, de Azevedo BL, Rodrigues RAL. 2022. Giant Viruses as a Source of Novel Enzymes for Biotechnological Application. Pathogens 11: 1453. https://doi.org/10.3390/pathog....
 
52.
Oppermann J, Rozenberg A, Fabrin T, González-Cabrera C, Béjà O, Prigge M, Hegemann P. 2023. Robust Optogenetic Inhibition with Red-light-sensitive Anion-conducting Channelrhodopsins. eLife 12: RP90100. https://doi.org/10.7554/eLife.....
 
53.
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMF, Abrahao JS. 2024. The consequences of viral infection on protists. Commun Biol. 7: 306. https://doi.org/10.1038/s42003....
 
54.
Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM. 2004. The 1.2-megabase genome sequence of Mimivirus. Science 306: 1344–1350. https://doi.org/10.1126/scienc....
 
55.
Rappaport HB, Oliverio AM. 2023. Extreme environments offer an unprecedented opportunity to understand microbial eukaryotic ecology, evolution, and genome biology. Nat Commun. 14: 4959. https://doi.org/10.1038/s41467....
 
56.
Rowe JM, Fabre M, Gobena D, Wilson WH, Wilhelm SW. 2011. Application of the major capsid protein as a marker of the phylogenetic diversity of Emiliania huxleyi viruses. FEMS Microbiol Ecol. 76(2): 373–380. https://doi.org/ 10.1111/j.1574-6941.2011.01055.x.
 
57.
Rozenberg A, Oppermann J, Wietek J, Fernandez Lahore RG, Sandaa RA, Bratbak G, Hegemann P, Béjà O. 2020. Lateral Gene Transfer of Anion-Conducting Channelrhodopsins between Green Algae and Giant Viruses. Curr Biol. 30: 4910–4920.e5. https://doi.org/10.1016/j.cub.....
 
58.
Sandaa RA, Heldal M, Castberg T, Thyrhaug R, Bratbak G. 2001. Isolation and characterization of two viruses with large genome size infecting Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis (Prasinophyceae). Virology 290: 272. https://doi.org/10.1006/viro.2....
 
59.
Santini S, Jeudy S, Bartoli J, Poirot O, Lescot M, Abergel C, Barbe V, Wommack KE, Noordeloos AA, Brussaard CP, et al. 2013. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci USA 110: 10800–10805. https://doi.org/10.1073/pnas.1....
 
60.
Schulz F, Abergel C, Woyke T. 2022. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat Rev Microbiol. 20: 721–736. https://doi.org/10.1038/s41579....
 
61.
Schvarcz CR, Steward GF. 2018. A giant virus infecting green algae encodes key fermentation genes. Virology 518: 423. https://doi.org/10.1016/j.viro....
 
62.
Sharma D, Coulibaly F, Kondabagil K. 2024. Mimivirus encodes an essential MC1-like non-histone architectural protein involved in DNA condensation. bioRxiv. http://dx.doi.org/10.1101/2024....
 
63.
Sharma V, Colson P, Pontarotti P, Raoult D. 2016. Mimivirus inaugurated in the 21st century the beginning of a reclassification of viruses. Curr Opin Microbiol. 31: 16–24. https://doi.org/10.1016/j.mib.....
 
64.
Simmonds P, Adriaenssens EM, Zerbini FM, Abrescia NGA, Aiewsakun P, Alfenas-Zerbini P, Bao Y, Barylski J, Drosten C, Duffy S, et al. 2023. Four principles to establish a universal virus taxonomy. PLoS Biol. 21: e3001922. https://doi.org/10.1371/journa....
 
65.
Stough JMA, Yutin N, Chaban YV, Moniruzzaman M, Gann ER, Pound HL, Steffen MM, Black JN, Koonin EV, Wilhelm SW, et al. 2019. Genome and Environmental Activity of a Chrysochromulina parva Virus and Its Virophages. Front Microbiol. 10: 703. https://doi.org/10.3389/fmicb.....
 
66.
Sun T, Ku C. 2021. Unraveling gene content variation across eukaryotic giant viruses based on network analyses and host associations. Virus Evol 7(2): 1–13. https://doi.org/ 10.1093/ve/veab081.
 
67.
Talbert PB, Armache K, Henikoff S. 2022. Viral histones: pickpocket’s prize or primordial progenitor? Epigenetics Chromatin 15(1): 21. https://doi.org/10.1186/s13072....
 
68.
Tang L. 2020. Learning the diversity of giant viruses. Nat Methods 17: 253. https://doi.org/10.1038/s41592....
 
69.
Tokarz-Deptu³a B, Chrzanowska S, Gurgacz N, Stosik M, Deptu³a W. 2023. Virophages – Known and Unknown Facts. Viruses 15: 1321. https://doi.org/10.3390/v15061....
 
70.
Truchon AR, Chase EE, Gann ER, Moniruzzaman M, Crea-sey BA, Aylward FO, Xiao C, Gobler CJ, Wilhelm SW. 2023. Kratosvirus quantuckense: the history and novelty of an algal bloom disrupting virus and a model for giant virus research. Front Microbiol. 14: 1284617. https://doi.org/10.3389/fmicb.....
 
71.
Truchon AR, Gann ER, Wilhelm SW. 2022. Closed, circular genome sequence of Aureococcus anophagefferens Virus, a lytic virus of a brown tide-forming alga. Microbiol Resour Announc. 11: e0028222. https://doi.org/10.1128/mra. 00282-22.
 
72.
Weynberg KD, Allen MJ, Wilson WH. 2017. Marine prasinoviruses and their tiny plankton hosts: a review. Viruses 9: 43. https://doi.org/10.3390/v90200....
 
73.
Wilhelm SW, Bird JT, Bonifer KS, Calfee BC, Chen T, Coy SR, Gainer PJ, Gann ER, Heatherly HT, Lee J, et al. 2017. A student’s guide to giant viruses infecting small Euka­ryotes: from Acanthamoeba to Zooxanthellae. Viruses 9: 46. https://doi.org/10.3390/v90200....
 
74.
Yu Z, Chu KH, Li CP, Anh V, Zhou L, Wang RW. 2010. Whole-proteome phylogeny of large dsDNA viruses and parvoviruses through a composition vector method related to dynamical language model. BMC Evol Biol. 10(1): 192. https://doi.org/10.1186/1471-2....
 
75.
Yutin N, Koonin EV. 2012. Hidden evolutionary complexity of Nucleo-Cytoplasmic Large DNA viruses of eukaryotes. Virol J. 9: 161. https://doi.org/10.1186/1743-4....
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top