RESEARCH PAPER
Molecular identity and cytotoxicity of Lenzites quercina macrofungus extracts toward cancer cell lines
 
More details
Hide details
1
Department of Microbiology, Federal University of Technology, Akure, Nigeria
 
2
Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
 
3
W.H.O. Polio Laboratory, Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
 
4
Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
 
 
Submission date: 2016-09-09
 
 
Final revision date: 2016-11-18
 
 
Acceptance date: 2016-12-12
 
 
Publication date: 2017-05-25
 
 
BioTechnologia 2017;98(1):25-32
 
KEYWORDS
TOPICS
ABSTRACT
The medicinal uses of wild macrofungi have been attributed to their accumulated bioactive compounds. Several mushrooms have been reported to possess antitumor activity, but little, in this regard, is known about Lenzites quercina collected from Akure in Nigeria. Hence, the molecular identification and cytotoxic activity of extracts obtained from raw and fermented Lenzites quercina were assessed. The macrofungus Lenzites quercina was identified using Internal Transcribed Spacers (ITS) sequence analysis. The basic local alignment search tool (BLAST) analyzed on NCBI GenBank data revealed that the Lenzites species from Nigeria – accession number, JF689829.1 – was closely related to Lenzites quercina (a 100% relationship match). The cytotoxic activity of raw and fermented Lenzites quercina extracts was tested against human cervical cancer (HeLa), habdomyosarcoma (RD) and African green monkey kidney (VERO) cell lines. A tetrazolium yellow 3-(4,5-dimethyl thiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) colorimetric assay was used to evaluate the reduction in viability of cell cultures with or without the extracts of Lenzites quercina. Extracts of Lenzites quercina exhibited cytotoxic activity (6.0-84.5%) against the tested cancer cell lines (HeLa, VERO and RD). The concentration of the bioactive compounds in the crude extract ranged from 0.01 to 1000 μg/ml. The results revealed that bioactive compounds in Lenzites quercina possess cytotoxic properties. These bioactive compounds may be isolated and used as alternative therapies to currently available anticancer drugs.
REFERENCES (25)
1.
Badalyan S.M. (2014) Potential of mushroom bioactive molecules to develop healthcare biotech products, Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8). New Delhi, India.
 
2.
Daba A.S., Ezeronye O.U. (2003) Anti-cancer effect of polysaccharides isolated from higher Basidiomycetes mushrooms. Afr. J. Biotech. 2(12): 672-678.
 
3.
Das S.K., Mandal A., Datta A.K., Gupta S., Paul R., Saha A., Sengupta S., Dubey P.K. (2013) Nucleotide Sequencing and Identification of Some Wild Mushrooms. Sci, World J. 2013: 1-7. http://dx.doi.org/10.1155/2013....
 
4.
De Silva D.D., Rapior S., Fons F., Bahkali A.H., Hyde K.D. (2012) Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Diver. 55: 1-35.
 
5.
Ferreira I.C., Vaz J.A., Vasconcelos M.H., Martins A. (2010) Compounds from wild mushrooms with antitumor potential. Anticancer Agents Med. Chem. 10(5): 424-436.
 
6.
Hengartner M.O. (2000) The biochemistry of apoptosis. Nat. 407: 770-776.
 
7.
Hood I.A. (2006) The Mycology of the Basidiomycetes. [in:] Heart rot and root rot in Tropical Acacia Plantations. Proceedings of a Workshop held in Yogyakarta, Indonesia, 7-9 February 2006. Australian Center for International Agricultural Research (ACIAR) Proceedings, Canberra, 124: 34-59.
 
8.
Hyde K.D., Udayanga D., Manamgoda D.S., Tedersoo L., Larsson E., Abarenkov K., Bertrand Y.J.K., Oxelman B., Hartmann M., Kauserud H., Ryberg M., Kristiansson E., Nilsson R.H. (2013) Incorporating molecular data in fungal systematics: a guide for aspiring researchers. Curr. Res. Environ. Appl. Mycol. 3(1): 1-32. Doi: 10.5943/cream/3/1/1.
 
9.
Jedinak A.J., Sliva D. (2008) Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway. Int. J. Oncol. 33: 1307-1313.
 
10.
Jiménez-Medina E., Berruguilla E., Romero I. et al. (2008) The immunomodulator PSK induces in vitro cytotoxic activity in tumor cell lines via arrest of cell cycle and induction of apoptosis. BMC Cancer 8: 78-87.
 
11.
Lavi I., Nimri L., Levinson D., Peri I., Hadar Y., Schwartz B. (2012) Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. J. Gastroenterol. 47: 504-518.
 
12.
Ma H., Das T., Pereira S., Yang Z., Zhao M., Mukerji P., Hoffman R.M. (2009) Efficacy of dietary antioxidants combined with a chemotherapeutic agent on human colon cancer progression in a fluorescent orthotopic mouse model. Anticancer Res. 29: 2421-2426.
 
13.
Mossman T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65: 55-63.
 
14.
Patel S., Goyal A. (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2: 1-15. Doi: 10.1007/s13205–011–0036–2.
 
15.
Porras-Alfaro A., Liu K.-L., Kuske C.R., Xie G. (2014) From genus to phylum: large-subunit and Internal Transcribed Spacer rRNA operon regions show similar classification accuracies influenced by database composition. Appl. Environ. Microbiol. 80(3): 829-840.
 
16.
Ruthes A.C., Smiderlea F.R., Iacominia M. (2016) Mushroom heteropolysaccharides: a review on their sources, structure and biological effects. Carbohy. Poly. 136: 358-375. http://dx.doi.org/10.1016/j.ca....
 
17.
Sak K. (2012) Chemotherapy and dietary phytochemical agents. Chemo. Res. Prac. 2012: 1-11. doi: 10.1155/ 2012/282570.
 
18.
Sia G.M., Candlish J.K. (1999). Effects of shiitake (Lentinus edodes) extract on human neutrophils and the U937 monocytic cell line. Phytother. Res. 13(2): 133-137.
 
19.
Thomson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. (1997). The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876- 4882.
 
20.
Tsay J.G., Chung K.T., Yeh C.H., Chen W.L., Chen C.H., Lin M.H. (2009) Calvatia lilacina protein-extract induces apoptosis through glutathione depletion in human colorectal carcinoma cells. J. Agric. Food Chem. 57: 1579-1588.
 
21.
Vanyolos A., Kovacs B., Bozsity N., Zupko I., Hohmann J. (2015) Antiproliferative activity of some higher mushrooms from Hungary against human cancer cell lines. Int. J. Med. Mushrooms. 17(12): 1145-1149.
 
22.
Wasser S.P. (2014) Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed. J. 37(6): 345-356. Doi: 10.4103/2319–4170. 138318. Wasser S.P. (2011) Current findings, future trends, and.
 
23.
unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotech. 89: 1323-1332.
 
24.
Yamasaki A., Shoda M., Iijima H. et al. (2009) A protein bound polysaccharide, PSK, enhances tumor suppression induced by docetaxel in a gastric cancer xenograft model. Anticancer Res. 29(3): 843-850.
 
25.
Zolan M.E., Pukkila P.J. (1986) Inheritance of DNA methylation in Coprinus cinereus. Mol. Cell Biol. 6: 195-200.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top