REVIEW PAPER
Molecular mechanisms of lead toxicity
 
More details
Hide details
 
Publication date: 2015-01-29
 
 
BioTechnologia 2014;95(2):137-149
 
KEYWORDS
ABSTRACT
Lead is a ubiquitous xenobiotic metal and because of its widespread industrial use is one of the most serious environmental
pollutants. Lead is highly toxic and exposure to even low doses can produce adverse effects on all
living organisms. In humans, lead exposure can affect virtually all body systems, resulting in severe health problems.
On a molecular level, lead can alter or interfere with the activity of proteins and nucleic acids, ultimately
resulting in changes in cell metabolism and physiology leading to pathologic states. Lead can also affect the
functions of macromolecules, directly or indirectly, by inducing oxidative stress, which is regarded as a primary
factor in pathophysiology of lead exposure.
REFERENCES (100)
1.

Adhikari A., Penatti C.A., Resende R.R., Ulrich H., Britto L.R., Bechara E.J. (2006) 5-Aminolevulinate and 4, 5-dioxovalerate ions decrease GABA(A) receptor density in neuronal cells, synaptosomes and rat brain. Brain Res. 1093: 95-104.
 
2.

Aethranis C.A., Farkas W. (1995) Does the Pb(2+)-catalyzed depolymerization of RNA occur in vivo? Nucl. Acids Symp. Ser. 33: 109-114. Aoyama K., Nakaki T. (2013) Impaired glutathione synthesis in neurodegeneration. Int. J. Mol. Sci. 14: 21021-21044.
 
3.

Atchison W.D. (2003) Effects of toxic environmental contaminants on voltage-gated calcium channel function: from past to present. J. Bioenerg. Biomembr. 35: 507-532.
 
4.

Ayouaz A., Raynaud C., Heride C., Revaud D., Sabatier L. (2008) Telomeres: hallmarks of radiosensitivity. Biochimie 90: 60-72.
 
5.

Banu L., Blagojevic V., Bohme D.K. (2012) Lead(II)-catalyzed oxidation of guanine in solution studied with electrospray ionization mass spectrometry. J. Phys. Chem. B 116: 11791-11797.
 
6.

Barciszewski J., Siboska G.E., Pedersen B.O., Clark B.F., Rattan S.I. (1997) A mechanism for the in vivo formation of N6-furfuryladenine, kinetin, as a secondary oxidative damage product of DNA. FEBS Lett. 414: 457-460.
 
7.

Bechara E.J.H (1996) Oxidative stress in acute intermittent porphyria and lead poisoning may be triggered by 5-aminolevulinic acid. Brazilian J. Med. Biol. Res. 29: 841-851.
 
8.

Beernink P.T., Segelke B.W., Hadi M.Z., Erzberger J.P., Wilson D.M. 3rd, Rupp B. (2001) Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism. J. Mol. Biol. 307: 1023-1034.
 
9.

Bellacosa A., Moss E.G. (2003) RNA repair: damage control. Curr. Biol. 13: R482-484. Bellinger D.C. (2011) The protean toxicities of lead: New chapters in a familiar story. Int. J. Environ. Res. Public Health 8: 2593-2628.
 
10.

Blattler A., Farnham P.J. (2013) Cross-talk between site-specific transcription factors and DNA methylation states. J. Biol. Chem. 288: 34287-34294.
 
11.
Bocci V., Valacchi G. (2013) Free radicals and antioxidants: how to reestablish redox homeostasis in chronic diseases? Curr. Med. Chem. 20: 3397-3415. Bolin C.M., Basha R.,.
 
12.

Cox D., Zawia N.H., Maloney B., Lahiri D.K., Cardozo-Pelaez F. (2006) Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB J. 20: 788-790. Breitenbach M., Ralser M., Perrone G.G., Iglseder B., Rinnerthaler M., Dawes I.W. (2013) Oxidative stress and neurodegeneration: the yeast model system. Front. Biosci. 18: 1174-1193.
 
13.

Bridges C.C., Zalups R.K. (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204: 274-308.
 
14.

Brink L.L., Talbott E.O., Sharma R.K., Marsh G.M., Wu W.C., Rager J.R., Strosnider H.M. (2013) Do US ambient air lead levels have a significant impact on childhood blood lead levels: results of a national study. J. Environ. Public. Health 2013: 278042.
 
15.

Brocato J., Costa M. (2014) Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Crit. Rev. Toxicol. 43: 493-514. Brown R.S., Hingerty B.E., Devan J.C., Klug A. (1983) Pb(II) –catalyzed cleavage of the sugar-phosphate backbone of yeast tRNAPhe – implications for lead toxicity and self splicing RNA. Nature 303: 543-546.
 
16.

Burger A.M., Dai F., Schultes C.M., Reszka A.P., Moore M.J., Double J.A., Neidle S. (2005) The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res. 65: 1489-1496. Cawley S., Bekiranov S., Ng H.H., Kapranov P., Sekinger E.A., Kampa D., Piccolboni
A., Sementchenko A., Cheng J., Williams A.J. et al. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116: 499-509.
 
17.

Cecil K.M., Brubaker C.J., Adler C.M., Dietrich K.N., Altaye M., Egelhoff J.C., Wessel S., Elangovan I., Hornung R., Jarvis K. et al. (2008) Decreased brain volume in adults with childhood lead exposure. PLoS Med. 5: 0741-0749 Cheng K.C., Cahill D.S., Kasai H.,
.
 
18.

Nishimura S., Loeb L.A. (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G6T and A6C substitutions. J. Biol. Chem. 267: 166-172.
 
19.

D'Errico M., Parlanti E., Dogliotti E. (2008) Mechanism of oxidative DNA damage repair and relevance to human pathology. Mutat. Res. 659: 4-14.
 
20.

Demple B., Harrison L. (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63: 915-948.
 
21.

Deng H.Y., Termini J. (1992) Catalytic RNA reactions of yeast tRNAPhe fragments. Biochemistry 31: 10518-10528. Di Mascio P, Teixeira PC, Onuki J, Medeiros MH, Dörnemann D, Douki T, Cadet J. (2000) DNA damage by 5-aminolevulinic and 4,5-dioxovaleric acids in the presence of ferritin. Arch. Biochem. Biophys. 373: 368-374.
 
22.

Djordjević V.B. (2004) Free radicals in cell biology.Int. Rev. Cytol. 237: 57-89.
 
23.
Dowd T.L., Rosen J.F., Gundberg C.M., Gupta R.K. (1994) The displacement of calcium from osteocalcin at submicromolar concentrations of free lead. Biochim. Biophys. Acta 1226: 131-137.
 
24.

Franco R., Schoneveld O.J., Pappa A., Panayiotidis M.I. (2007) The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem. 113: 234-258. Froehlich T.E., Lanphear B.P., Auinger P., Hornung R., Epstein J.N., Braun J., Kahn R.S. (2009) Association of tobacco and lead exposures with attention-deficit/hyperactivity disorder. Pediatrics 124: E1054-E1063. Garcia-Leston J., Mendez J., Pasaro E., Laffon B. (2010) Genotoxic effects of lead: an updated review. Environ. Int. 36: 623-636.
 
25.

García-Lestón J., Roma-Torres J., Vilares M., Pinto R., Prista J., Teixeira J.P., Mayan O.,
Conde J., Pingarilho M., Gaspar J.F., Pásaro E., Méndez J., Laffon B. (2012) Genotoxic effects of occupational exposure to lead and influence of polymorphisms in genes involved in lead toxicokinetics and in DNA repair. Environ Int 43: 29-36.
 
26.
Gastaldo J., Viau M., Bencokova Z., Joubert A., Charvet A.M., Balosso J., Foray N. (2007) Lead contamination results in late and slowly repairable DNA double-strand breaks and impacts upon the ATM-dependent signaling pathways. Toxicol. Lett. 173: 201-214.
 
27.

Gurer H., Ercal N. (2000) Can antioxidants be beneficial in the treatment of lead poisoning? Free. Radic. Biol. Med. 29: 927-945.
 
28.

Hanas J.S., Rodgers J.S., Bantle J.A., Cheng Y.G. (1999) Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins. Mol. Pharmacol. 56: 982-988.
 
29.
Hayakawa H., Hofer A., Thelander L., Kitajima S., Cai Y., Oshiro S., Yakushiji H., Nakabeppu Y., Kuwano M., Sekiguchi M. (1999) Metabolic fate of oxidized guanine ribonucleotides in mammalian cells. Biochemistry 38: 3610-3614.
 
30.
Hayes R.B. (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8: 371-385. Hoeflich K.P., Ikura M. (2002) Calmodulin in action: Diversity in target recognition and activation mechanisms. Cell 108: 739-742.
 
31.
Hofer T., Badouard C., Bajak E., Ravanat J.L., Mattsson A., Cotgreave I.A. (2005) Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol. Chem. 386: 333-337.
Hofer T., Seo A.Y., Prudencio M., Leeuwenburgh C. (2006) A method to determine RNA and DNA oxidation simultaneously by HPLC-ECD: greater RNA than DNA oxidation in rat liver after doxorubicin administration. Biol. Chem. 387: 103-111.
 
32.

Honda K., Smith M.A., Zhu X., Baus D., Merrick W.C., Tartakoff A.M., Hattier T., Harris P.L., Siedlak S.L., Fujioka H. et al. (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J. Biol. Chem. 280: 20978-20986.
 
33.

Huang F.C., Chang C.C., Lou P.J., Kuo I.C., Chien C.W., Chen C.T., Shieh F.Y., Chang T.C., Lin J.J. (2008) G-quadruplex stabilizer 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide induces accelerated senescence and inhibits tumorigenic properties in cancer cells. Mol. Cancer Res. 6: 955-964.
 
34.

Ishibashi T., Hayakawa H., Ito R., Miyazawa M., Yamagata Y., Sekiguchi M. (2005) Mammalian enzymes for preventing transcriptional errors caused by oxidative damage. Nucleic Acids Res. 33: 3779-3784.
 
35.

Ji C., Rouzer C.A., Marnett L.J., Pietenpol J.A. (1998) Induction of cell cycle arrest by the endogenous product of lipid peroxidation, malondialdehyde. Carcinogenesis 19: 1275-1283. Jirtle R.L., Skinner M.K. (2007) Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8: 253-262.
 
36.

Jusko T.A., Henderson C.R., Lanphear B.P., Cory-Slechta D.A., Parsons P.J., Canfield R.L. (2008) Blood lead concentrationsKlug A. (1999) Zinc finger peptides for the regulation of gene expression. J. Mol. Biol. 293: 215-218.
 
37.
Klug A., Rhodes D. (1987) Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb. Symp. Quant. Biol. 52: 473-482.
 
38.

Koh K.P., Rao A. (2013) DNA methylation and methylcytosine oxidation in cell fate decisions. Curr. Opin. Cell. Biol. 25: 152-161. Kong C.M., Lee X.W., Wang X. (2013) Telomere shortening in human diseases. FEBS J. 280: 3180-3193.
 
39.

Kulis M., Queirós A.C., Beekman R., Martín-Subero J.I. (2013) Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim. Biophys. Acta 1829: 1161-1174.
 
40.

Laity J.H., Lee B.M., Wright P.E. (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11: 39-46.
 
41.
Lanphear B.P., Hornung R., Khoury J., Yolton K., Baghurst P., Bellinger D.C., Canfield R.L.,
Dietrich K.N., Bornschein R., Green T. et al. (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ. Health Perspect. 113: 894-899.
 
42.

Li C., Yang X., Xu M., Zhang J., Sun N. (2013) Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure. Clin Toxicol 51: 225- 229. Li C., Xu M., Wang S., Yang X., Zhou S., Zhang J., Liu Q., Sun Y. (2011) Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands. Toxicol. Lett. 203: 48-53.
 
43.

Li L., Davie J.R. (2010) The role of Sp1 and Sp3 in normal and cancer cell biology. Ann. Anat. 192: 275-283.
 
44.
Liu W., Fu Y., Zheng B., Cheng S., Li W., Lau T.C., Liang H. (2011) Kinetics and mechanism of conformational changes in a G-quadruplex of thrombin-binding aptamer induced by Pb2+ . J. Phys. Chem. B 115: 13051-13056.
 
45.

Long G.J., Rosen J.F., Schanne F.A. (1994) Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR. J. Biol. Chem. 269: 834-837. Lowry D.F., Hoyt D.W., Khazi F.A., Bagu J., Lindsey A.G., Wilson D.M. 3rd (2003) Investigation of the role of the histidine-aspartate pair in the human exonuclease III-like abasic endonuclease, Ape1. J. Mol. Biol. 329: 311-322.
 
46.

Maddukuri L., Eoff R.L., Choi J.Y., Rizzo C.J., Guengerich F.P., Marnett L.J. (2010) In vitro bypass of the major malondialdehyde- and base propenal-derived DNA adduct by human Y-family DNA polymerases kappa, iota, and Rev1. Biochemistry 49: 8415-8424.
 
47.
Mah V., Jalilehvand F. (2012) Lead(II) complex formation with glutathione. Inorg. Chem. 51: 6285-6298.
 
48.

Mangal D., Vudathala D., Park J.H., Lee S.H., Penning T.M., Blair I.A. (2009) Analysis of 7,8-dihydro-8-oxo-2'-deoxyguanosine in cellular DNA during oxidative stress. Chem. Res. Toxicol. 22: 788-797.
 
49.

Manini P., De Palma G., Andreoli R., Marczynski B., Hanova M., Mozzoni P., Naccarati A., Vodickova L., Hlavac P., Mutti A. et al. (2009) Biomarkers of nucleic acid oxidation, polymorphism in, and expression of, hOGG1 gene in styrene-exposed workers. Toxicol. Lett. 190: 41-47.
 
50.

Manini P., De Palma G., Andreoli R., Mozzoni P., Poli D., Goldoni M., Petyx M., Apostoli P., Mutti A. (2010) Occupational exposure to low levels of benzene: biomarkers of exposure and nucleic acid oxidation and their modulation by polymorphic xenobiotic metabolizing enzymes. Toxicol. Lett. 193: 229-235.
 
51.

Marnett L.J. (2000) Oxyradicals and DNA damage. Carcinogenesis 21: 361-370. McCulloch S.D., Kokoska R.J., Garg P., Burgers P.M., Kunkel T.A. (2009) The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta. Nucl. Acids Res. 37: 2830-2840. Marnett LJ (2002) Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181-182: 219-222.
 
52.

McNeill D.R., Narayana A., Wong H.K., Wilson D.M. 3rd (2004) Inhibition of Ape1 nuclease activity by lead, iron, and cadmium. Environ. Health Perspect. 112: 799-804.
 
53.
McNeill D.R., Wong H.K., Narayana A., Wilson D.M. 3rd. (2007) Lead promotes abasic site accumulation and comutagenesis in mammalian cells by inhibiting the major abasic endonuclease Ape1. Mol. Carcinog. 46: 91-99. Millevoi S., Moine H., Vagner S. (2012) G-quadruplexes in RNA biology. Wiley Interdiscip. Rev. RNA 3: 495-507.
 
54.
Mol C.D., Hosfield D.J., Tainer J.A. (2000a) Abasic site recognition by two purinic/apyrimidinic endonuclease families in DNA base excision repair: the 3 ends justify the means. Mutat. Res. 460: 211-229.
 
55.

Mol C.D., Izumi T., Mitra S., Tainer J.A. (2000b) DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination. Nature 403: 451-456.
 
56.
Monteiro H.P., Abdalla D.S.P., Augusto O., Bechara E.J.H (1986) Generation of active oxygen species during coupled oxidation of oxyhemoglobin and δ-aminolevulinic acid. Biochem. Biophys. Acta. 881: 100-106.
 
57.

Nakabeppu Y., Kajitani K., Sakamoto K., Yamaguchi H., Tsuchimoto D. (2006) MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair 5: 761-772.
 
58.

Nakabeppu Y., Tsuchimoto D., Ichinoe A., Ohno M., Ide Y., Hirano S., Yoshimura D., Tominaga Y., Furuichi M., Sakumi K. (2011) Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei. Ann. N.Y. Acad. Sci. 1011: 101-111.
 
59.

Nriagu J.O. (1992) Saturnine drugs and medicinal exposure to lead: a historical outline. In: Needleman HL (Ed.). Human lead exposure. CRC Press, Boca Raton, Florida, pp. 3-22.
 
60.

Nunomura A., Moreira P.I., Castellani R.J., Lee H.G., Zhu X., Smith M.A., Perry G. (2012) Oxidative damage to RNA in aging and neurodegenerative disorders. Neurotox. Res. 22: 231-248.
 
61.

Ohmichi T., Okumoto Y., Sugimoto N. (1998) Effect of substrate RNA sequence on the cleavage reaction by a short ribozyme. Nucleic Acids Res. 26: 5655-5661.
 
62.
Ouyang H., Vogel H.J. (1998) Metal ion binding to calmodulin: NMR and fluorescence studies. Biometals 11: 213-222. Pan T., Dichtl B., Uhlenbeck O. (1994) Properties of an in vitro selected Pb2+ cleavage motif. Biochemistry 33: 9561-9565.
 
63.

Pan T., Uhlenbeck O. (1992a) In vitro selection of RNAs that undergo autolytic cleavage with Pb2+ . Biochemistry 31: 3887-3895.
 
64.
Pan T., Uhlenbeck O. (1992b) A small metalloribozyme with a twostep mechanism. Nature 358: 560-563.
 
65.

Park H.Y., Kim S.A., Korlach J., Rhoades E., Kwok L.W., Zipfel W.R., Waxham M.N., Webb W.W., Pollack L. (2008) Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer. Proc. Natl. Acad. Sci. USA 105: 542-547.
 
66.

Patrick L. (2006) Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern. Med. Rev. 11: 2-22.
 
67.

Payne J.C., Horst M.A., Godwin H.A. (1999) Lead Fingers: Pb2+ Binding to Structural Zinc-Binding Domains Determined Directly. J. Am. Chem. Soc. 121: 6850-6855.
 
68.
Pilsner J.R., Hu H., Ettinger A., Sánchez B.N., Wright R.O., Cantonwine D., Lazarus A., Lamadrid-Figueroa H., Mercado-García A., Téllez-Rojo M.M. et al. (2009) Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ. Health Perspect. 117: 1466-1471.
 
69.

Pirkle J.L., Brody D.J., Gunter E.W., Kramer R.A., Paschal D.C., Flegal K.M., Matte T.D. (1994) The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES). JAMA 272: 284-291.
 
70.
Pottier G., Viau M., Ricoul M., Shim G., Bellamy M., Cuceu C., Hempel W.M., Sabatier L. (2013) Lead exposure induces telomere instability in human cells. PLoS One 8: e67501. Poulsen H.E., Specht E., Broedbaek K., Henriksen T., Ellervik C., Mandrup-Poulsen T., Tonnesen M., Nielsen P.E., Andersen H.U., Weimann A. (2012) RNA modifications by oxidation: a novel disease mechanism? Free Radic. Biol. Med. 52: 1353-1361.
 
71.

Reddy G.R., Zawia N.H. (2000) Lead exposure alters Egr-1 DNA-binding in the neonatal rat brain. Int. J. Dev. Neurosci. 18: 791-795.
 
72.

Reichard J.F., Schnekenburger M., Puga A. (2007) Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem. Biophys. Res. Commun. 352: 188-192.
 
73.
Ribarov S.R., Bochev P.G. (1982) Lead-hemoglobin interaction as a possible source of reactive oxygen species – A chemiluminescent study. Arch. Biochem. Biophys. 213: 288-292.
Roy N.K., Rossman T.G. (1992) Mutagenesis and comutagenesis by lead compounds. Mutat. Res. 298: 97-103.
 
74.

Sandhir R., Gill K.D. (1995) Effect of lead on lipid peroxidation in liver of rats. Biol. Trace. Elem. Res. 48: 91-97Sciandrello G., Caradonna F., Mauro M., Barbata G. (2004) Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis 25: 413-417.
 
75.

Scully R., Xie A. (2013) Double strand break repair functions of histone H2AX. Mutat. Res. 750: 5-14.
 
76.
Senior N.M., Brocklehurst K., Cooper J.B., Wood S.P., Erskine P., Shoolingin-Jordan P.M.,
Thomas P.G., Warren M.J. (1996) Comparative studies on the 5-aminolaevulinic acid dehydratases from Pisum sativum, Escherichia coli and Saccharomyces cerevisiae. Biochem. J. 320: 401-412.
 
77.

Shan X., Chang Y., Lin C.L. (2007) Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J. 21: 2753-2764.
 
78.

Silbergeld E.K. (2003) Facilitative mechanisms of lead as a carcinogen. Mutat. Res. 533: 121-133.
 
79.

Silveira E.A., Siman F.D., de Oliveira Faria T., Vescovi M.V., Furieri L.B., Lizardo J.H., Stefanon I., Padilha A.S., Vassallo D.V. (2014) Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radic. Biol. Med. 67: 366-376.
 
80.

Smith C.M., Wang X., Hu H., Kelsey K.T. (1995) A polymorphism in the δ-aminolevulinic acid dehydratase gene may modify the pharmacokinetics and toxicity of lead. Environ. Health Perspect. 103: 248-253.
 
81.

Taddei F., Hayakawa H., Bouton M., Cirinesi A., Matic I., Sekiguchi M., Radman M. (1997) Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278, 128-130.
 
82.
Tan N.Y., Khachigian L.M. (2009) Sp1 phosphorylation and its regulation of gene transcription. Mol. Cell. Biol. 29: 2483-2488.
 
83.

Tanaka M., Chock P.B., Stadtman E.R. (2007) Oxidized messenger RNA induces translation errors. Proc. Natl. Acad. Sci. U. S. A. 104: 66-71.
 
84.

Teebor G.W., Marensein D.R., Wilson D.M. 3rd (2004) Human AP endonuclease (APE1) demonstrates endonucleolytic activity against AP sites in single-stranded DNA. DNA Repair 3: 527-533.
 
85.

Voulgaridou G.P., Anestopoulos I., Franco R., Panayiotidis M.I., Pappa A. (2011) DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat. Res. 711: 13-27.
 
86.

Wang D., Kreutzer D.A., Essigmann J.M. (1998) Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat. Res. Fundam. Mol. Mech. Mutagen. 400: 99-115.
 
87.

Warren M.J., Cooper J.B., Wood S.P., Shoolingin-Jordan P.M., (1998) Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Trends Biochem. Sci. 23: 217-221.
 
88.

Weaver J.R., Bartolomei M.S. (2014) Chromatin regulators of genomic imprinting. Biochim. Biophys. Acta 1839: 169- 177.
 
89.

Webb C.J., Wu Y., Zakian V.A. (2013) DNA repair at telomeres: keeping the ends intact. Cold Spring Harb. Perspect. Biol. 5: a012666. Weimann A., Belling D., Poulsen H.E. (2002) Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by highperformance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res. 30: e7. Werner C., Krebs B., Keith G., Dirheimer G. (1976) Specific cleavages of pure tRNAs by plumbous ions. Biochim. Biophys. Acta 432: 161-175.
 
90.

Wetmur J.G., Kaya A.H., Plewinska M., Desnick R.J. (1991) Molecular characterization of the human delta-aminolevulinate dehydratase 2 (ALAD2) allele: implications for molecular screening of individuals for genetic susceptibility to lead poisoning. Am. J. Hum. Genet. 49: 757-763.
 
91.

Winter D., Polacek N., Halama I., Streicher B., Barta A. (1997) Lead-catalysed specific cleavage of ribosomal RNAs. Nucleic Acids Res. 25: 1817-1824.
 
92.
Wright R.O., Schwartz J., Wright R.J., Bollati V., Tarantini L., Park S.K., Hu H., Sparrow D., Vokonas P., Baccarelli A. (2010) Biomarkers of Lead Exposure and DNA Methylation within Retrotransposons. Environ. Health Perspect. 118: 790-795.
 
93.

Wu Y., Liu Y., Ni N., Bao B., Zhang C., Lu L. (2012) High lead exposure is associated with telomere length shortening in Chinese battery manufacturing plant workers. Occup. Environ. Med. 69: 557-563.
 
94.

Wyszko E., Barciszewska M.Z., Markiewicz M., Szymański M., Markiewicz W.T., Clark B.F., Barciszewski J. (2003) "Action-at-a distance" of a new DNA oxidative damage product 6-furfuryl-adenine (kinetin) on template properties of modified DNA. Biochim. Biophys. Acta 1625: 239-245.
 
95.

Wyszko E., Nowak M., Pospieszny H., Szymanski M., Pas J., Barciszewska M.Z., Barciszewski J. (2006) Leadzyme formed in vivo interferes with tobacco mosaic virus infection in Nicotiana tabacum. FEBS J. 273: 5022-5031.
 
96.

Xie X., Ding G., Cui C., Chen L., Gao Y., Zhou Y., Shi R., Tian Y. (2013) The effects of low-level prenatal lead exposure on birth outcomes. Environ Pollut 175: 30-34.
 
97.

Yang Y., Wu J., Sun P. (2012) Effects of delta-aminolevulinic acid dehydratase polymorphisms on susceptibility to lead in Han subjects from southwestern. China. Int. J. Environ. Res. Public. Health. 9: 2326-2338.
 
98.

Yau T.M. (1979) Mutagenicity and cytotoxicity of malondialdehyde in mammalian cells. Mech. Aging Dev. 11: 137-144. Zahler A.M., Williamson J.R., Cech T.R., Prescott D.M. (1991) Inhibition of telomerase by G-quartet DNA structures. Nature 350: 718-720.
 
99.

Zawia N.H., Sharan R., Brydie M., Oyama T., Crumpton T. (1998) Sp1 as a target site for metal-induced perturbations of transcriptional regulation of developmental brain gene expression. Brain Res. Dev. Brain Res. 107: 291- 298.
 
100.

Zhang A., Hu H., Sánchez B.N., Ettinger A.S., Park S.K., Cantonwine D., Schnaas L., Wright R.O., Lamadrid-Figueroa H., Tellez-Rojo M.M. (2012) Association between prenatal lead exposure and blood pressure in children. Environ. Health Perspect. 120: 445-450.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top