REVIEW PAPER
Nanotechnology in food systems: opportunities and risks for human health
More details
Hide details
1
Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Raj Nagar, Ghaziabad, Uttar Pradesh, India
2
Department of Chemistry, IFTM University, Moradabad, Uttar Pradesh, India
Submission date: 2024-10-22
Final revision date: 2025-05-22
Acceptance date: 2025-08-27
Corresponding author
Sonam Yadav
Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Raj Nagar, Ghaziabad, Uttar Pradesh, India
KEYWORDS
TOPICS
ABSTRACT
Nanotechnology has emerged as a promising field with the potential to revolutionize several industries, including the food industry. It offers innovative solutions to critical challenges in food, such as safety, nutrition, waste reduction, and sustainability. This study examines the possibilities offered by nanotechnology in the food sector, with a focus on risk assessment, safety evaluation, and regulatory approaches. While nanotechnology in food applications presents many advantages, it also raises concerns about potential health risks. Due to their distinct characteristics, nanoparticles may interact with living organisms in unpredictable ways, creating challenges for risk assessment and management. This review also explores the possible hazards of using nanomaterials in the food system, highlighting the need for comprehensive toxicity studies and effective regulatory frameworks. Addressing these issues requires a multidisciplinary approach involving collaboration among scientists, regulators, policymakers, and stakeholders to balance the benefits and risks of nanotechnology in the food system. As the food sector seeks novel approaches to meet rising global demand, it is crucial to thoroughly assess both the advantages and risks of nanotechnology to ensure its responsible and sustainable application while protecting human health and the environment.
REFERENCES (141)
1.
Agriopoulou S, Stamatelopoulou E, Skiada V, Tsarouhas P, Varzakas T. 2020. Emerging nanomaterial applications for food packaging and preservation: Safety issues and risk assessment. Proceedings 70(1): 7.
https://doi.org/10.3390/foods_....
2.
An C, Sun C, Li N, Huang B, Jiang J, Shen Y, Wang C, Zhao X, Cui B, Wang C, et al. 2022. Nanomaterials and nanotechnology for the delivery of agrochemicals: Strategies towards sustainable agriculture. J Nanobiotechnol. 20: 11.
https://doi.org/10.1186/s12951....
3.
Arpanaei A, Fu Q, Singh T. 2024. Nanotechnology approaches towards biodeterioration-resistant wood: A review. J Bioresour Bioprod. 9(1): 3–26.
https://doi.org/10.1016/j.joba....
4.
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3(2): 279–290.
https://doi.org/10.1021/nn8005....
5.
Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK. 2018. Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal. 26(4): 1201–1214.
https://doi.org/10.1016/j.jfda....
6.
Baranwal A, Srivastava A, Kumar P, Bajpai VK, Maurya PK, Chandra P. 2018. Prospects of nanostructured materials and their composites as antimicrobial agents. Front Microbiol. 9: 422.
https://doi.org/10.3389/fmicb.....
7.
Biola-Clier M, Béal D, Caillat S, Libert SS, Armand LK, Herlin-Boime N, Sauvaigo S, Douki T, Carrière M. 2017. Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis 32(1): 161–172.
https://doi.org/10.1093/mutage....
8.
Biswas P, Polash SA, Dey D, Kaium MA, Mahmud AR, Yasmin F, Baral SK, Islam MA, Rahaman TI, Abdullah A, et al. 2023. Advanced implications of nanotechnology in disease control and environmental perspectives. Biomed Pharmacother. 158: 114172.
https://doi.org/10.1016/j.biop....
9.
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. 2017. Nanoparticles and innate immunity: New perspectives on host defence. Semin Immunol. 34: 33–51.
https://doi.org/10.1016/j.smim....
10.
Bou-Mitri C, Abdessater M, Zgheib H, Akiki Z. 2021. Food packaging design and consumer perception of the product quality, safety, healthiness and preference. Nutr Food Sci. 51(1): 71–86.
https://doi.org/10.1108/nfs-02....
12.
Bumbudsanpharoke N, Ko S. 2015. Nano-food packaging: An overview of market, migration research, and safety regulations. J Food Sci. 80(5): R910–R923.
https://doi.org/10.1111/1750-3....
13.
Cao M, Chen C. 2022. Bioavailability of nanomaterials: bridging the gap between nanostructures and their bioactivity. Natl Sci Rev. 9(10): nwac119.
https://doi.org/10.1093/nsr/nw....
14.
Cardoza C, Nagtode V, Pratap A, Mali SN. 2022. Emerging applications of nanotechnology in cosmeceutical health science: latest updates. Health Sci Rev. 4: 100051.
https://doi.org/10.1016/j.hsr.....
16.
Chellaram C, Murugaboopathi G, John AA, Sivakumar R, Ganesan S, Krithika S, Priya G. 2014. Significance of nanotechnology in food industry. APCBEE Procedia. 8: 109–113.
https://doi.org/10.1016/j.apcb....
17.
Chen H, Yada R. 2011. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Sci Technol. 22(11): 585–594.
https://doi.org/10.1016/j.tifs....
18.
Chudasama M, Goyary J. 2024. Nanostructured materials in food science: current progress and future prospects. Next Mater. 5: 100206.
https://doi.org/10.1016/j.nxma....
20.
Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. 2012. Nanotechnologies in the food industry – recent developments, risks and regulation. Trends Food Sci Technol. 24(1): 30–46.
https://doi.org/10.1016/j.tifs....
21.
Dainelli D, Gontard N, Spyropoulos D, Zondervan-van den Beuken E, Tobback P. 2008. Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci Technol. 19 (Suppl 1): S103–S112.
https://doi.org/10.1016/j.tifs....
22.
Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A. 2015. Nanotechnology in agro-food: from field to plate. Food Res Int. 69: 381–400.
https://doi.org/10.1016/j.food....
23.
Dazon C, Fierro V, Celzard A, Witschger O. 2020. Identification of nanomaterials by the volume specific surface area (VSSA) criterion: application to powder mixes. Nanoscale Adv. 2(10): 4908–4917.
https://doi.org/10.1039/d0na00....
24.
Dimitrijevic M, Karabasil N, Boskovic M, Teodorovic V, Vasilev D, Djordjevic V, Kilibarda N, Cobanovic N. 2015. Safety aspects of nanotechnology applications in food packaging. Procedia Food Sci. 5: 57–60.
https://doi.org/10.1016/j.prof....
25.
El-Sheekh MM, Morsi HH, Hassan LHS, Ali SS. 2022. The efficient role of algae as green factories for nanotechnology and their vital applications. Microbiol Res. 263: 127111.
https://doi.org/10.1016/j.micr....
26.
Esmaeillou M, Moharamnejad M, Hsankhani R, Tehrani AA, Maadi H. 2013. Toxicity of ZnO nanoparticles in healthy adult mice. Environ Toxicol Pharmacol. 35(1): 67–71.
https://doi.org/10.1016/j.etap....
27.
Fajardo C, Martinez-Rodriguez G, Blasco J, Mancera JM, Thomas B, De Donato M. 2022. Nanotechnology in aquaculture: applications, perspectives and regulatory challenges. Aquac Fish. 7(2): 185–200.
https://doi.org/10.1016/j.aaf.....
28.
Fletcher N, Bartholomaeus A. 2011. Regulation of nanotechnologies in food in Australia and New Zealand. Int Food Risk Anal J. 1(2): 33–40.
https://doi.org/10.5772/10685.
29.
Fröhlich E. 2012. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 7: 5577–5591.
https://doi.org/10.2147/ijn.s3....
30.
Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. 2014. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 22(1): 64–75.
https://doi.org/10.1016/j.jfda....
31.
Gasa-Falcon A, Acevedo-Fani A, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. 2020. Development, physical stability and bioaccessibility of b-carotene-enriched tertiary emulsions. J Funct Foods. 64: 103615.
https://doi.org/10.1016/j.jff.....
32.
George S, Kaptan G, Lee J, Frewer L. 2014. Awareness on adverse effects of nanotechnology increases negative perception among public: survey study from Singapore. J Nanopart Res. 16(12): 2751.
https://doi.org/10.1007/s11051....
33.
Gomollón-Bel F. 2019. Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem Int. 41(2): 12–17.
https://doi.org/10.1515/ci-201....
34.
Gottardo S, Mech A, Drbohlavová J, Małyska A, Bøwadt S, Riego Sintes J, Rauscher H. 2021. Towards safe and sustainable innovation in nanotechnology: state-of-play for smart nanomaterials. NanoImpact. 21: 100297.
https://doi.org/10.1016/j.impa....
35.
Graveland-Bikker JF, de Kruif CG. 2006. Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol. 17(5): 196–203.
https://doi.org/10.1016/j.tifs....
36.
Gupta A, Rayeen F, Mishra R, Tripathi M, Pathak N. 2023. Nanotechnology applications in sustainable agriculture: an emerging eco-friendly approach. Plant Nanobiol. 4: 100033.
https://doi.org/10.1016/j.plan....
37.
Gupta RK, Ali EAE, El A, Mecheal Daood V, Sabry H, Karunanithi S, Srivastav PP. 2024. Valorization of fruits and vegetables waste byproducts for development of sustainable food packaging application. Waste Manag Bull. 2(4).
https://doi.org/10.1016/j.wmb.....
38.
Gupta RK, El Gawad FA, Ali EAE, Karunanithi S, Yugiani P, Srivastav PP. 2023 Nanotechnology: current applications and future scope in food packaging systems. Meas Food. 13: 100131.
https://doi.org/10.1016/j.meaf....
40.
Haleem A, Javaid M, Singh RP, Suman R, Rab S. 2021. Biosensors applications in medical field: a brief review. Sens Int. 2: 100100.
https://doi.org/10.1016/j.sint....
41.
Hamad AF, Han JH, Kim BC, Rather IA. 2018. The intertwine of nanotechnology with the food industry. Saudi J Biol Sci. 25(1): 27–30.
https://doi.org/10.1016/j.sjbs....
42.
Han C, Zhao A, Varughese E, Sahle-Demessie E. 2018. Evaluating weathering of food packaging polyethylene-nano-clay composites: release of nanoparticles and their impacts. NanoImpact. 9: 61–71.
https://doi.org/10.1016/j.impa....
43.
Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, et al. 2018. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 16(7): e05327.
https://doi.org/10.2903/j.efsa....
44.
Hassoun A, Dankar I, Bhat Z, Bouzembrak Y. 2024. Unveiling the relationship between food unit operations and food industry 4.0: a short review. Heliyon. 10(20): e39388.
https://doi.org/10.1016/j.heli....
46.
He X, Fu P, Aker WG, Hwang HM. 2018. Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions. J Environ Sci Health C. 36(1): 1–22.
https://doi.org/10.1080/105905....
47.
He X, Hwang HM. 2016. Nanotechnology in food science: Functionality, applicability, and safety assessment. J Food Drug Anal. 24(4): 671–681.
https://doi.org/10.1016/j.jfda....
48.
Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL. 2014. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol. 48(8): 4376–4385.
https://doi.org/10.1021/es4049....
49.
Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. 2016. Foliar applied nano-scale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ. 563–564: 904–911.
https://doi.org/10.1016/j.scit....
50.
Hu P, An J, Faulkner MM, Wu H, Li Z, Tian X, Giraldo JP. 2020. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano. 14(7): 7970–7986.
https://doi.org/10.1021/acsnan....
51.
Huang J, Antonides G, Nie F. 2020. Social-psychological factors in food consumption of rural residents: the role of perceived need and habit within the theory of planned behavior. Nutrients. 12(4): 1203.
https://doi.org/10.3390/nu1204....
52.
Inbaraj BS, Chen BH. 2016. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal. 24(1): 15–28.
https://doi.org/10.1016/j.jfda....
53.
Jiang Z, Shan K, Song J, Liu J, Rajendran S, Pugazhendhi A, Jacob JA, Chen B. 2019. Toxic effects of magnetic nanoparticles on normal cells and organs. Life Sci. 220: 156–161.
https://doi.org/10.1016/j.lfs.....
54.
Jovanoviæ B. 2015. Critical review of public health regulations of titanium dioxide, a human food additive. Integr Environ Assess Manag. 11(1): 10–20.
https://doi.org/10.1002/ieam.1....
55.
Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman C, Berindan-Neagoe I. 2017. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther. 11: 2871–2890.
https://doi.org/10.2147/dddt.s....
56.
Kalpana Sastry R, Anshul S, Rao NH. 2013. Nanotechnology in food processing sector – an assessment of emerging trends. J Food Sci Technol. 50(5): 831–841.
https://doi.org/10.1007/s13197....
57.
Karlaganis G, Liechti R, Teparkum S, Aungkavattana P, Indaraprasirt R. 2019. Nanoregulation along the product life cycle in the EU, Switzerland, Thailand, the USA, and intergovernmental organisations, and its compatibility with WTO law. Toxicol Environ Chem. 101(7–8): 339–368.
https://doi.org/10.1080/027722....
58.
Kaur G, Panigrahi C, Agarwal S, Khuntia A, Sahoo M. 2024.Recent trends and advancements in nanoemulsions: production methods, functional properties, applications in food sector, safety and toxicological effects. Food Phys. 1: 100024–100024.
https://doi.org/10.1016/j.food....
59.
Kim DH, Gopal J, Sivanesan I. 2017. Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv. 7(58): 36492–36505.
https://doi.org/10.1039/c7ra07....
60.
King T, Osmond-McLeod MJ, Duffy L. 2018. Nanotechnology in the food sector and potential applications for the poultry industry. Trends Food Sci Technol. 72: 62–73.
https://doi.org/10.1016/j.tifs....
61.
Kommuru TR, Gurley B, Khan MA, Reddy IK. 2001. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm. 212(2): 233–246.
https://doi.org/10.1016/s0378-....
62.
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. 2020. General aspects of metal ions as signaling agents in health and disease. Biomolecules. 10(10): 1417.
https://doi.org/10.3390/biom10....
63.
Kumar P, Mahajan P, Kaur R, Gautam S. 2020. Nanotechnology and its challenges in the food sector: a review. Mater Today Chem. 17: 100332.
https://doi.org/10.1016/j.mtch....
64.
Kumari A, Rana V, Yadav SK, Kumar V. 2023. Nanotechnology as a powerful tool in plant sciences: recent developments, challenges and perspectives. Plant Nano Biol. 5: 100046.
https://doi.org/10.1016/j.plan....
65.
LeBlanc AJ, Cumpston JL, Chen BT, Frazer D, Castranova V, Nurkiewicz TR. 2009. Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J Toxicol Environ Health A. 72(24): 1576–1584.
https://doi.org/10.1080/152873....
66.
Leso V, Fontana L, Marinaccio A, Leopold K, Fanali C, Lucchetti D, Sgambato A, Iavicoli I. 2018. Palladium nanoparticle effects on endocrine reproductive system of female rats. Hum Exp Toxicol. 37(10): 1069–1079.
https://doi.org/10.1177/096032....
67.
Li P, Huang Y, Fu C, Jiang SX, Peng W, Jia Y, Peng H, Zhang P, Manzie N, Mitter N, et al. 2021. Eco-friendly biomolecule-nanomaterial hybrids as next-generation agrochemicals for topical delivery. EcoMat. 3(5): e12132.
https://doi.org/10.1002/eom2.1....
68.
Magnuson BA, Jonaitis TS, Card JW. 2011. A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci. 76(6): R126–R133.
https://doi.org/10.1111/j.1750....
69.
Magnuson BA, Munro I, Abbot P, Baldwin N, Lopez-Garcia R, Ly K, McGirr L, Roberts A, Socolovsky S. 2013. Review of the regulation and safety assessment of food substances in various countries and jurisdictions. Food Addit Contam Part A. 30(7): 1147–1220.
https://doi.org/10.1080/194400....
70.
Mali S. 2023. Global food nanotechnology market report 2025 edition, market size, share, CAGR, forecast, revenue. Cogn Mark Res. www.cognitivemarketresearch.com/food-nanotechnology-market-report.
72.
Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. 2016. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology. 10(8): 1021–1040.
https://doi.org/10.1080/174353....
73.
Maria SP, Torres-Arellanes SP, Cortés-Martínez CI, Navarro-Ibarra DC, Hernández-Sánchez L, Solis-Pomar F, Pérez-Tijerina E, Román-Doval R. 2024. Nanotechnology in food packaging materials: role and application of nanoparticles. RSC Adv. 14(30): 21832–21858.
https://doi.org/10.1039/d4ra03....
74.
Mehmood T, Ahmed A, Ahmed Z. 2021. Food-grade nanoemulsions for the effective delivery of b-carotene. Langmuir. 37(10): 3086–3092.
https://doi.org/10.1021/acs.la....
75.
Mills A, Hazafy D. 2009. Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sens Actuators B Chem. 136(2): 344–349.
https://doi.org/10.1016/j.snb.....
76.
Mitter N, Hussey K. 2019. Moving policy and regulation forward for nanotechnology applications in agriculture. Nat Nanotechnol. 14: 508–510.
https://doi.org/10.1038/s41565....
77.
Moore MN. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int. 32(8): 967–976.
https://doi.org/10.1016/j.envi....
78.
Muthukrishnan L. 2022. An overview on the nanotechnological expansion, toxicity assessment and remediating approaches in agriculture and food industry. Environ Technol Innov. 25: 102136.
https://doi.org/10.1016/j.eti.....
79.
Nayak SN, Aravind B, Malavalli SS, Sukanth BS, Poornima R, Bharati P, Hefferon K, Kole C, Puppala N. 2021. Omics technologies to enhance plant-based functional foods: an overview. Front Genet. 12: 742095.
https://doi.org/10.3389/fgene.....
81.
Neme K, Nafady A, Uddin S, Tola YB. 2021. Application of nano-technology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon. 7(12): e08539.
https://doi.org/10.1016/j.heli....
82.
Neo YP, Ray S, Jin J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Liu D, Quek SY. 2013. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein–gallic acid system. Food Chem. 136(2): 1013–1021.
https://doi.org/10.1016/j.food....
83.
Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. 2020.Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-Micro Lett. 12(1): 45.
https://doi.org/10.1007/s40820....
84.
Nile SH, Kai G. 2021. Recent clinical trials on natural products and traditional Chinese medicine combating the COVID-19. Indian J Microbiol. 61(1): 10–15.
https://doi.org/10.1007/s12088....
85.
Oehlke K, Adamiuk M, Behsnilian D, Gräf V, Mayer-Miebach E, Walz E, Greiner R. 2014. Potential bioavailabi-lity enhancement of bioactive compounds using food-grade engineered nanomaterials: a review of the existing evidence. Food Funct. 5: 1341–1359.
https://doi.org/10.1039/c3fo60....
86.
Onyeaka H, Passaretti P, Miri T, Al-Sharify ZT. 2022. The sa-fety of nanomaterials in food production and packaging. Curr Res Food Sci. 5: 763–774.
https://doi.org/10.1016/j.crfs....
88.
Pathakoti K, Manubolu M, Hwang HM. 2017. Nanostructures: current uses and future applications in food science. J Food Drug Anal. 25(2): 245–253.
https://doi.org/10.1016/j.jfda....
89.
Peters RJB, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJP, Mech A, Moniz FB, Pesudo LQ, et al. 2016. Nanomaterials for pro-ducts and application in agriculture, feed and food. Trends Food Sci Technol. 54: 155–164.
https://doi.org/10.1016/j.tifs....
90.
Petosa AR, Rajput F, Selvam O, Öhl C, Tufenkji N. 2017. Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Res. 111: 10–17.
https://doi.org/10.1016/j.watr....
91.
Qiao S, Kang Y, Tan X, Zhou X, Zhang C, Lai S, Liu J, Shao L. 2024. Nanomaterials-induced programmed cell death: focus on mitochondria. Toxicol. 504: 153803.
https://doi.org/10.1016/j.tox.....
92.
Rae JM, Jachimska B. 2021. Analysis of dendrimer-protein interactions and their implications on potential applications of dendrimers in nanomedicine. Nanoscale. 13(4): 2703–2713.
https://doi.org/10.1039/d0nr07....
93.
Rasmussen JW, Martinez E, Louka P, Wingett DG. 2010. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 7(9): 1063–1077.
https://doi.org/10.1517/174252....
94.
Rothen-Rutishauser B, Bogdanovich M, Harter R, Milosevic A, Petri-Fink A. 2021. Use of nanoparticles in food industry: Current legislation, health risk discussions and public perception with a focus on Switzerland. Toxicol Environ Chem. 103(4): 1–17.
https://doi.org/10.1080/027722....
95.
Sadeghi R, Rodriguez RJ, Yao Y, Kokini JL. 2017. Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annu Rev Food Sci Technol. 8: 467–492.
https://doi.org/10.1146/annure....
96.
Saha B, Biswas S, Datta S, Mojumdar A, Pal S, Mohanty PS, Giri MK. 2024. Sustainable nano solutions for global food security and biotic stress management. Plant Nano Biol. 9: 100090–100090.
https://doi.org/10.1016/j.plan....
98.
Sahoo M, Vishwakarma S, Panigrahi C, Kumar J. 2021. Nanotechnology: current applications and future scope in food. Food Front. 2(1): 3–22.
https://doi.org/10.1002/fft2.5....
100.
Santonastaso M, Mottola F, Colacurci N, Iovine C, Pacifico S, Cammarota M, Cesaroni F, Rocco L. 2019. In vitro genotoxic effects of titanium dioxide nanoparticles (n-TiO2) in human sperm cells. Mol Reprod Dev. 86(10): 1369–1377.
https://doi.org/10.1002/mrd.23....
101.
Santos S, Santana S, Antunes Filho S, Backx BP. 2024.Nanotechnology for the control of plant pathogens and pests. Plant Nano Biol. 8: 100080–100080.
https://doi.org/10.1016/j.plan....
102.
Sarmah D, Banerjee M, Datta A, Kalia K, Dhar S, Yavagal DR, Bhattacharya P. 2021. Nanotechnology in the diagnosis and treatment of stroke. Drug Discov Today. 26(2): 585–592.
https://doi.org/10.1016/j.drud....
103.
Schoonjans R, Castenmiller J, Chaudhry Q, Cubadda F, Daskaleros T, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, et al. 2023. Regulatory safety assessment of nanoparticles for the food chain in Europe. Trends Food Sci Technol. 134: 98–111.
https://doi.org/10.1016/j.tifs....
104.
Semo E, Kesselman E, Danino D, Livney Y. 2007. Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll. 21(5–6): 936–942.
https://doi.org/10.1016/j.food....
106.
Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. 2019.Applications of nanotechnology in plant growth and crop protection: a review. Molecules. 24(14): 2558.
https://doi.org/10.3390/molecu....
107.
Sharma N, Kurmi BD, Singh D, Mehan S, Khanna K, Karwasra R, Kumar S, Chaudhary A, Jakhmola V, Sharma A, et al. 2024. Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies. J Drug Target. 32(5): 457–469.
https://doi.org/10.1080/106118....
108.
Shen CX, Zhang QF, Li J, Bi FC, Yao N. 2010. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot. 97(10): 1602–1609.
https://doi.org/10.3732/ajb.10....
109.
Shi S, Wang W, Liu L, Wu S, Wei Y, Li W. 2013. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J Food Eng. 118(1): 125–131.
https://doi.org/10.1016/j.jfoo....
111.
Siddiqui SA, Zannou O, Bahmid NA, Fidan H, Alamou AF, Nagdalian AA, Hassoun A, Fernando I, Ibrahim SA, Arsyad M. 2022. Consumer behavior towards nanopackaging – a new trend in the food industry. Future Foods. 6(2): 100191.
https://doi.org/10.1016/j.fufo....
112.
Singh A, Rajput VD, Varshney A, Ghazaryan K, Minkina T. 2023. Small tech, big impact: agri-nanotechnology journey to optimize crop protection and production for sustai-nable agriculture. Plant Stress. 10: 100253.
https://doi.org/10.1016/j.stre....
113.
Singh N, Nelson B, Scanlan L, Coskun E, Jaruga P, Doak SH. 2017. Exposure to engineered nanomaterials: impact on DNA repair pathways. Int J Mol Sci. 18(7): 1515.
https://doi.org/10.3390/ijms18....
114.
Sodano V, Gorgitano MT, Quaglietta M, Verneau F. 2016. Regulating food nanotechnologies in the European Union: open issues and political challenges. Trends Food Sci Technol. 54: 216–226.
https://doi.org/10.1016/j.tifs....
115.
Sonwani S, Madaan S, Arora J, Suryanarayan S, Rangra D, Mongia N, Vats T, Saxena P. 2021. Inhalation exposure to atmospheric nanoparticles and its associated impacts on human health: a review. Front Sustain Cities. 3: 690444.
https://doi.org/10.3389/frsc.2....
117.
Speranza A, Crinelli R, Scoccianti V, Taddei AR, Iacobucci M, Bhattacharya P, Ke PC. 2013. In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ Pollut. 179: 258–267.
https://doi.org/10.1016/j.envp....
118.
Sramkova M, Kozics K, Masanova V, Uhnakova I, Razga F, Nemethova V, Mazancova P, Kapka-Skrzypczak L, Kruszew-ski M, Novotova M, et al. 2019. Kidney nanotoxicity stu-died in human renal proximal tubule epithelial cell line TH1. Mutat Res Genet Toxicol Environ Mutagen. 845: 403017.
https://doi.org/10.1016/j.mrge....
120.
Su C, Ji Y, Liu S, Gao S, Cao S, Xu X, Zhou C, Liu Y. 2020.Fluorescence-labeled abamectin nanopesticide for comprehensive control of pinewood nematode and Monochamus alternatus Hope. ACS Sustain Chem Eng. 8(44): 16555–16564.
https://doi.org/10.1021/acssus....
121.
Taniselass S, Arshad MKM, Gopinath SCB. 2019. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron. 130: 276–292.
https://doi.org/10.1016/j.bios....
122.
Taran M, Safaei M, Karimi N, Almasi A. 2021. Benefits and application of nanotechnology in environmental science: an overview. Biointerface Res Appl Chem. 11(1): 7860–7870.
https://doi.org/10.33263/briac....
123.
Thuong NT, Dung TA, Yusof NH, Kawahara S. 2020. Controlling the size of silica nanoparticles in filler nanomatrix structure of natural rubber. Polymer. 195: 122444.
https://doi.org/10.1016/j.poly....
124.
Trajkovska Petkoska A, Daniloski D, D’Cunha NM, Naumovski N, Broach AT. 2021. Edible packaging: sustainable solutions and novel trends in food packaging. Food Res Int. 140: 109981.
https://doi.org/10.1016/j.food....
125.
Tripathi M, Kumar A, Kumar S. 2017. Characterization of silver nanoparticles synthesizing bacteria and its possible use in treatment of multi drug resistant isolate. Front Environ Microbiol. 3(4): 62–67.
https://doi.org/10.11648/j.fem....
126.
Ul Haq I, Ijaz S. 2019. Use of metallic nanoparticles and nanoformulations as nanofungicides for sustainable disease management in plants. In: Prasad R, Kumar V, Kumar M, Choudhary D (eds.). Nanobiotechnology in Bioformulations. Nanotechnology in the Life Sciences. Springer, Cham. p. 289–316.
https://doi.org/10.1007/978-3-....
127.
Ullah MF, Khan Y, Khan MI, Abdullaeva BS, Waqas M. 2024. Exploring nanotechnology in forensic investigations: techniques, innovations, and future prospects. Sens Bio-Sens Res. 45: 100674.
https://doi.org/10.1016/j.sbsr....
128.
U.S. Department of Agriculture. 2003. Nanoscale science and engineering for agriculture and food systems: a report submitted to cooperative state research, education and extension service. Washington, DC.
129.
Valdiglesias V, Costa C, Kiliç G, Costa S, Pásaro E, Laffon B, Teixeira JP. 2013. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int. 55: 92–100.
https://doi.org/10.1016/j.envi....
131.
Wang Y, Gao D, Liu Y, Guo X, Chen S, Zeng L, Min J, Zhang X, Tian Z, Yang Z. 2021. Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact Mater. 6(6): 1513–1527.
https://doi.org/10.1016/j.bioa....
134.
Wesley SJ, Raja P, Raj AAS, Tiroutchelvamae D. 2014. Review on nanotechnology applications in food packaging and safety. Int J Eng Res. 3(11): 645–651.
https://doi.org/10.17950/ijer/....
135.
Yadav N, Garg VK, Chhillar AK, Rana JS. 2023. Recent advan-ces in nanotechnology for the improvement of conventional agricultural systems: a review. Plant Nano Biol. 4: 100032.
https://doi.org/10.1016/j.plan....
136.
Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G. 2010. A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface. 7 (Suppl 4): S411–S422.
https://doi.org/10.1098/rsif.2....
138.
Zain M, Ma H, Nuruzzaman M, Chaudhary S, Nadeem M, Shakoor N, Azeem I, Duan A, Sun C, Ahamad T. 2023.Nanotechnology-based precision agriculture for alleviating biotic and abiotic stress in plants. Plant Stress. 10: 100239.
https://doi.org/10.1016/j.stre....
139.
Zhang L, Wei J, Duan J, Guo C, Zhang J, Ren L, Liu J, Li Y, Sun Z, Zhou X. 2020. Silica nanoparticles exacerbates reproductive toxicity development in high-fat diet-treated Wistar rats. J Hazard Mater. 384: 121361.
https://doi.org/10.1016/j.jhaz....
140.
Zhang Y, Ma S, Liu X, Xu Y, Zhao J, Si X, Li H, Huang Z, Wang Z, Tang Z, et al. 2021. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv Mater. 33(7): e2007293.
https://doi.org/10.1002/adma.2....
141.
Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. 2011. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 7(10): 1322–1337.
https://doi.org/10.1002/smll.2....