REVIEW PAPER
Phage display-selected peptides for binding and synthesis of nanoparticles: ZnO as an example
 
More details
Hide details
1
Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland
 
2
Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
 
 
Submission date: 2016-01-15
 
 
Final revision date: 2016-05-03
 
 
Acceptance date: 2016-05-18
 
 
Publication date: 2016-07-20
 
 
BioTechnologia 2016;97(2):145-151
 
KEYWORDS
TOPICS
ABSTRACT
Nanoparticles of metal oxides are widely used in bionanotechnology, particularly in bio-medical applications; e.g., construction of biosensors, separation of biological materials, molecular imaging, and anticancer and antimicrobial therapies. However, synthesis of these nanoparticles using physico-chemical methods is problematic, because such procedures require high-temperature processes and harsh chemical treatments. The use of peptides specifically binding particular nanoparticles or nanostructures and facilitating their synthesis appears to be an encouraging alternative. Specific peptides capable of such reactions may be identified with the use of the phage display method. In this mini-review, zinc oxide is discussed as an exemple material whose nanoparticles can be bound and synthesized by such peptides exposed on the surface of bacteriophage capsids. An analysis of reports on studies into methods of peptide-aided synthesis of ZnO nanoparticles has indicated that, despite the encouraging results obtained so far, further studies are necessary to optimize such procedures. This may also be true for nanoparticles of other materials, particularly metal oxides.
REFERENCES (61)
1.
Atanasova P., Weitz R.T., Gerstel P., Srot V., Kopold P., van Aken P.A., Burghard M., Bill J. (2009) DNA-templated synthesis of ZnO thin layers and nanowires. Nanotechnology 20: 365302.
 
2.
Bai H.Y., Xu F., Anjia L., Matsui H. (2009) Low temperature synthesis of zno nanowires by using a genetically-modified collagen-like triple helix as a catalytic template. Soft Matter 5: 966-969.
 
3.
Bilecka I., Elser P., Niederberger M. (2009) Kinetic and thermodynamic aspects in the microwave-assisted synthesis of zno nanoparticles in benzyl alcohol. ACS Nano 3: 467-477.
 
4.
Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 87: 1181-1200.
 
5.
Chen Y., Yu R.Z., Shi Q., Qin J.L., Zheng F. (2007) Hydrothermal synthesis of hexagonal ZnO clusters. Mater. Lett. 61: 4438-4441.
 
6.
de Morais M.G., Martins V.G., Steffens D., Pranke P., da Costa J.A.V. (2014) Biological applications of nanobiotechnology. J. Nanosci. Nanotech. 14: 1007-1017.
 
7.
Dizaj S.M., Lotfipour F., Barzegar-Jalali M., Zarrintan M.H., Adibkia K. (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 44: 278-284.
 
8.
Eldridge G.M., Weiss G.A. (2015) Identifying reactive peptides from phage-displayed libraries. Peptide Librar. Meth. Protocols 1248: 189-199.
 
9.
Golec P., Karczewska-Golec J., Los M., Wegrzyn G. (2012) Novel ZnO-binding peptides obtained by the screening of a phage display peptide library. J. Nanopart. Res. 14: 1218.
 
10.
Hansen M.P., Hoffmann T.C., McCullough A.R., van Driel M.L., Del Mar C.B. (2015) Antibiotic resistance: What are the opportunities for primary care in alleviating the crisis? Front. Public Health 3: 35.
 
11.
Hulkoti N.I., Taranath T.C. (2014) Biosynthesis of nanoparticles using microbes-a review. Colloids Surf. B Biointerfaces 121: 474-483.
 
12.
Hussain I., Singh N.B., Singh A., Singh H., Singh S.C. (2015) Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. DOI: 10.1007/s10529–015–2026–7.
 
13.
Hwang C.C., Lin C.S., Wang G.P., Peng C.H., Chung S.L. (2009) A self-propagating high-temperature synthesis method for synthesis of zinc oxide powder. J. Alloys Compd. 467: 514-523.
 
14.
Ivask A., Juganson K., Bondarenko O., Mortimer M., Aruoja V., Kasemets K., Blinova I., Heinlaan M., Slaveykova V., Kahru A. (2014) Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review. Nanotoxicology 8: 57-71.
 
15.
Jayaseelan C., Rahuman A.A., Kirthi A.V., Marimuthu S., Santhoshkumar T., Bagavan A., Gaurav K., Karthik L., Rao K.V.B. (2012) Novel microbial route to synthesize ZnO nanoparticles using aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A Mol. Biomol. Spectroscopy 90: 78-84.
 
16.
Jha A.K., Kumar V., Prasad K. (2011) Biosynthesis of metal and oxide nanoparticles using orange juice. J. Bionanosci. 5: 162-166.
 
17.
Kjaergaard K., Sorensen J.K., Schembri M.A., Klemm P. (2000) Sequestration of zinc oxide by fimbrial designer chelators. Appl. Environ. Microbiol. 66: 10-14.
 
18.
Kumar S., Ahlawat W., Kumar R., Dilbaghi N. (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens. Bioelectron. 70: 498-503.
 
19.
Liang M.K., Deschaume O., Patwardhan S.V., Perry C.C. (2011) Direct evidence of ZnO morphology modification via the selective adsorption of ZnO-binding peptides. J. Mater. Chem. 21: 80-89.
 
20.
Limo M.J., Ramasamy R., Perry C.C. (2015) ZnO binding peptides: Smart versatile tools for controlled modification of ZnO growth mechanism and morphology. Chem. Mater. 27: 1950-1960.
 
21.
Lin Z.M., Monteiro-Riviere N.A., Riviere J.E. (2015) Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7: 189-217.
 
22.
Lipovsky A., Gedanken A., Lubart R. (2013) Visible light-induced antibacterial activity of metaloxide nanoparticles. Photomed. Laser Surg. 31: 526-530.
 
23.
Loh L., Dunn S. (2012) Recent progress in ZnO-based nanostructured ceramics in solar cell applications. J. Nanosci. Nanotechnol. 12: 8215-8230.
 
24.
Madhumitha G., Elango G., Roopan S.M. (2016) Biotechnological aspects of ZnO nanoparticles: Overview on synthesis and its applications. Appl. Microbiol. Biotechnol. 100: 571-581.
 
25.
McIntyre R.A. (2012) Common nano-materials and their use in real world applications. Sci. Prog. 95: 1-22.
 
26.
Migliore L., Uboldi C., Di Bucchianico S., Coppede F. (2015) Nanomaterials and neurodegeneration. Environ. Mol. Mutag. 56: 149-170.
 
27.
Moon C.H., Tousi M., Cheeney J., Ngo-Duc T.T., Zuo Z., Liu J.L., Haberer E.D. (2015) Effects of 8-mer acidic peptide concentration on the morphology and photoluminescence of synthesized ZnO nanomaterials. Appl. Phys. A Mater. Sci. Proces. 121: 757-763.
 
28.
Nagarajan S., Kuppusamy K.A. (2013) Extracellular synthesis of zinc oxide nanoparticle using seaweeds of Gulf of Mannar, India. J. Nanobiotechnol. 11: 39.
 
29.
Nohynek G.J., Dufour E.K. (2012) Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Arch. Toxicol. 86: 1063-1075.
 
30.
Nohynek G.J., Lademann J., Ribaud C., Roberts M.S. (2007) Gray goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37: 251-277.
 
31.
Okochi M., Ogawa M., Kaga C., Sugita T., Tomita Y., Kato R., Honda H. (2010a) Screening of peptides with a high affinity for ZnO using spot-synthesized peptide arrays and computational analysis. Acta Biomater. 6: 2301-2306.
 
32.
Okochi M., Sugita T., Furusawa S., Umetsu M., Adschiri T., Honda H. (2010b) Peptide array-based characterization and design of ZnO-high affinity peptides. Biotechnol. Bioeng. 106: 845-851.
 
33.
Pelgrift R.Y., Friedman A.J. (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Del. Rev. 65: 1803-1815.
 
34.
Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90: 2139021-2139023.
 
35.
Rothenstein D., Claasen B., Omiecienski B., Lammel P., Bill J. (2012) Isolation of ZnO-binding 12-mer peptides and determination of their binding epitopes by NMR spectroscopy. J. Am. Chem. Soc. 134: 12547-12556.
 
36.
Roy R., Das M., Dwivedi P.D. (2015) Toxicological mode of action of ZnO nanoparticles: Impact on immune cells. Mol. Immunol. 63: 184-192.
 
37.
Salam H.A., Sivaraj R., Venckatesh R. (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum l. Var. Purpurascens benth.-lamiaceae leaf extract. Mater. Lett. 131: 16-18.
 
38.
Schrofel A., Kratosova G., Safarik I., Safarikova M., Raska I., Shor L.M. (2014) Applications of biosynthesized metallic nanoparticles – a review. Acta Biomater. 10: 4023-4042.
 
39.
Shi L.E., Li Z.H., Zheng W., Zhao Y.F., Jin Y.F., Tang Z.X. (2014) Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Additiv. Contamin. A Chem. Anal. Contr. Expos. Risk Assess. 31: 173-186.
 
40.
Smith G.P. (1985) Filamentous fusion phage – novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315-1317.
 
41.
Sola-Rabada A., Liang M.K., Roe M.J., Perry C.C. (2015) Peptide-directed crystal growth modification in the formation of ZnO. J. Materials Chem. B 3: 3777-3788.
 
42.
Song L., Liu Y.Y., Chen J.C. (2010a) Baculoviral capsid display of His-tagged ZnO inorganic binding peptide. Cytotechnology 62: 133-141.
 
43.
Song L., Liu Y.Y., Zhang Z.F., Wang X., Chen J.C. (2010b) Bioinorganic synthesis of ZnO powders using recombinant his-tagged ZnO binding peptide as a promoter. Protein J. 29: 516-523.
 
44.
Togashi T., Yokoo N., Umetsu M., Ohara S., Naka T., Takami S., Abe H., Kumagai I., Adschiri T. (2011) Material-binding peptide application-zno crystal structure control by means of a ZnO-binding peptide. J. Biosci. Bioeng. 111: 140-145.
 
45.
Tokumoto M.S., Pulcinelli S.H., Santilli C.V., Briois V. (2003) Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol-gel route. J. Phys. Chem. B 107: 568-574.
 
46.
Tomczak M.M., Gupta M.K., Drummy L.F., Rozenzhak S.M., Nalk R.R. (2009) Morphological control and assembly of zinc oxide using a biotemplate. Acta Biomater. 5: 876-882.
 
47.
Umetsu M., Mizuta M., Tsumoto K., Ohara S., Takami S., Watanabe H., Kumagai I., Adschiri T. (2005) Bioassisted room-temperature immobilization and mineralization of zinc oxide – the structural ordering of ZnO nanoparticles into a flower-type morphology. Adv. Mater. 17: 2571.
 
48.
Vreuls C., Zocchi G., Genin A., Archambeau C., Martial J., Van de Weerdt C. (2010) Inorganic-binding peptides as tools for surface quality control. J. Inorg. Biochem. 104: 1013-1021.
 
49.
Wang H.F., Du L.J., Song Z.M., Chen X.X. (2013) Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food. Nanomedicine 8: 2007-2025.
 
50.
Wei Z.Y., Maeda Y., Matsui H. (2011) Discovery of catalytic peptides for inorganic nanocrystal synthesis by a combinatorial phage display approach. Angew. Chem. Internat. Ed. 50: 10585-10588.
 
51.
Whaley S.R., English D.S., Hu E.L., Barbara P.F., Belcher A.M. (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405: 665-668.
 
52.
Whitesides G.M. (2003) The ‘right’ size in nanobiotechnology. Nat. Biotechnol. 21: 1161-1165.
 
53.
Wiesenthal A., Hunter L., Wang S.G., Wickliffe J., Wilkerson M. (2011) Nanoparticles: Small and mighty. Int. J. Dermatol. 50: 247–254.
 
54.
Win-Shwe T.T., Fujimaki H. (2011) Nanoparticles and neurotoxicity. Internat. J. Mol. Sci. 12: 6267-6280.
 
55.
Xiong H.M. (2013) ZnO nanoparticles applied to bioimaging and drug delivery. Adv. Mater. 25: 5329–5335.
 
56.
Yakimova R., Selegard L., Khranovskyy V., Pearce R., Spetz A.L., Uvdal K. (2012) ZnO materials and surface tailoring for biosensing. Front. Biosci. (Elite Ed.) 4: 254-278.
 
57.
Yokoo N., Togashi T., Umetsu M., Tsumoto K., Hattori T., Nakanishi T., Ohara S., Takami S., Naka T., Abe H., et al. (2010) Direct and selective immobilization of proteins by means of an inorganic material-binding peptide: Discussion on functionalization in the elongation to material-binding peptide. J. Phys. Chem. B 114: 480-486.
 
58.
Yu H.W., Fan H.Q., Wang X., Wang J., Cheng P.F. (2015) Synthesis of flower-like ZnO nanostructures by sonochemical route and their photocatalytic activity. Optik 126: 4397-4400.
 
59.
Yu Q.J., Fu W.Y., Yu C.L., Yang H.B., Wei R.H., Li M.H., Liu S.K., Sui Y.M., Liu Z.L., Yuan M.X., et al. (2007) Fabrication and optical properties of large-scale zno nanotube bundles via a simple solution route. J. Phys. Chem. C 111: 17521-17526.
 
60.
Zhang S.F., Yao S.H., Li J., Zhao L.L., Wang J.Y., Boughton R.I. (2011) Growth habit control of ZnO single crystals in molten hydrous alkali solutions. J. Cryst. Growth 336: 56-59.
 
61.
Żelechowska K. (2014) Methods of ZnO nanoparticles synthesis. BioTechnologia 95: 150-159.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top