RESEARCH PAPER
Salinity-driven canthaxanthin enhancement in Chlorosarcinopsis PY02: a practical spot test for microalgal bioprocess optimization
 
More details
Hide details
1
Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
 
2
Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
 
3
Algal and Cyanobacterial Research Laboratory, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
 
4
Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
 
 
Submission date: 2025-07-08
 
 
Final revision date: 2025-10-17
 
 
Acceptance date: 2025-11-20
 
 
Publication date: 2025-12-23
 
 
Corresponding author
Orawan Borirak   

Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
 
 
BioTechnologia 2025;106(4):419-428
 
KEYWORDS
TOPICS
ABSTRACT
Background:
As society rapidly ages, the escalating global demand for natural, high-value antioxidants, particularly ketocarotenoids like canthaxanthin, is driving intensive research into their sustainable bioproduction. This study investigates the potential of the green microalga Chlorosarcinopsis PY02 as a novel microbial cell factory for enhanced ketocarotenoid production under abiotic stress conditions.

Material and methods:
We optimized bioprocess parameters using a simple, spot-test-based high throughput screening technique, evaluating algal growth and pigment accumulation on tris acetate phosphate agar supplemented with various sodium chloride concentrations (0–15 g/l).

Results:
Peak canthaxanthin content (294.55 µg/g DW) was observed at 10 g/L NaCl, while biomass yield was highest at 12 g/L. Combining salt stress with 50% nitrogen reduction increased total carotenoid productivity (3.10 mg/L total carotenoids) but did not improve canthaxanthin; the salt-only treatment yielded the highest canthaxanthin production (0.80 mg/L). Pigment identification and quantitative profiling were conducted using TLC and spectrophotometry, confirming the efficiency of the production process.

Conclusions:
These findings strongly position Chlorosarcinopsis PY02 as a promising candidate for sustainable, large-scale ketocarotenoid bioproduction. The study also demonstrates a cost-effective and scalable approach to induce carotenoid biosynthesis in Chlorosarcinopsis PY02, with relevance to sustainable pigment production processes. The simple visual screening method offers a useful practical tool for preliminary strain and condition optimization in microalgal bioprocess development.
REFERENCES (43)
1.
Aburai N, Sumida D, Abe K. 2015. Effect of light level and salinity on the composition and accumulation of free and ester-type carotenoids in the aerial microalga Scenedesmus sp. (Chlorophyceae). Algal Res. 8: 30–36. https://doi.org/10.1016/j.alga....
 
2.
Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN, Bo L, Yuepeng S. 2019. Industrial potential of carotenoid pigments from microalgae: current trends and prospects. Crit Rev Food Sci Nutr. 59(12): 1880–1902. https://doi.org/10.1080/104083....
 
3.
Bleisch R, Ihadjadene Y, Torrisi A, Walther T, Mühlstädt G, Steingröwer J, Streif S, Krujatz F. 2025. Physiological adaptation of Chromochloris zofingiensis in three-phased cultivation performed in a pilot-scale photobioreactor. Life (Basel) 15(4): 648. https://doi.org/10.3390/life15....
 
4.
Bogacz-Radomska L, Harasym J, Piwowar A. 2020. Commercialization aspects of carotenoids. In: Galanakis CM, ed. Carotenoids: properties, processing and applications. London; New York: Academic Press. P. 327–357.
 
5.
Brocklehurst TW, Rattanapaiboonkit K, Chanok JP, Phinyo K, Duangjan K, Borirak O. 2024. Uncovering the potential of nitrogen and salt stress for enhanced β-carotene production and antioxidant capacity in plant pathogenic alga Cephaleuros. Prog Appl Sci Technol. 14(2): 24–32. https://doi.org/10.60101/past.....
 
6.
Calloway D. 1997. Beer-Lambert law. J Chem Educ. 74(7): 744. https://doi.org/10.1021/ed074p....
 
7.
Chen HH, He YJ, Liang MH, Yan B, Jiang JG. 2022. The expression pattern of β-carotene ketolase gene restricts the accumulation of astaxanthin in Dunaliella under salt stress. J Cell Physiol. 237(2): 1607–1616. https://doi.org/10.1002/jcp.30....
 
8.
Chen JH, Liu L, Wei D. 2017. Enhanced production of astaxanthin by Chromochloris zofingiensis in a microplate-based culture system under high light irradiation. Bioresour Technol. 245: 518–529. https://doi.org/10.1016/ j.biortech.2017.08.102.
 
9.
Chen L, Zhang L, Zhang W, Liu T. 2015. Comparative analysis of growth and carotenoid accumulation of Trentepohlia arborum in aerial, subaerial, and aquatic cultivation. J Appl Phycol. 27(3): 1079–1087. https://doi.org/10.1007/s10811....
 
10.
Cherdchukeattisak P, Fraser PD, Purton S, Brocklehurst TW. 2018. Detection and enhancement of ketocarotenoid accumulation in the newly isolated sarcinoid green microalga Chlorosarcinopsis PY02. Biology 7(1): 17. https://doi.org/10.3390/biolog....
 
11.
Coulombier N, Nicolau E, Le Déan L, Barthelemy V, Schreiber N, Brun P, Lebouvier N, Jauffrais T. 2020. Effects of nitrogen availability on the antioxidant activity and carotenoid content of the microalgae Nephroselmis sp. Mar Drugs. 18(9): 453. https://doi.org/10.3390/md1809....
 
12.
Cui D, Hu C, Zou Z, Sun X, Shi J, Xu N. 2020. Comparative transcriptome analysis unveils mechanisms underlying the promoting effect of potassium iodide on astaxanthin accumulation in Haematococcus pluvialis under high-light stress. Aquaculture 525: 735279. https://doi.org/10.1016/ j.aquaculture.2020.735279.
 
13.
da Silva MROB, Moura YAS, Converti A, Porto ALF, Marques DAV, Bezerra RP. 2021. Assessment of the potential of Dunaliella microalgae for different biotechnological applications: a systematic review. Algal Res. 58: 102396. https://doi.org/10.1016/j.alga....
 
14.
Davies BH. 1965. Analysis of carotenoid pigments. In: Goodwin TW, ed. Chemistry and biochemistry of plant pigments. London; New York: Academic Press, p. 489–532.
 
15.
Dere Ş, Güneş T, Sivaci R. 1998. Spectrophotometric determination of chlorophyll-a, chlorophyll-b and total carotenoid contents of some algae species using different solvents. Turk J Bot. 22(1): 13–18.
 
16.
Doppler P, Kornpointner C, Halbwirth H, Remias D, Spadiut O. 2021. Tetraedron minimum, the first reported member of Hydrodictyaceae to accumulate secondary carotenoids. Life 11(2): 107. https://doi.org/10.3390/life11....
 
17.
Elloumi W, Jebali A, Maalej A, Chamkha M, Sayadi S. 2020. Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus sp. Biomolecules 10(11): 1515. https://doi.org/10.3390/biom10....
 
18.
Faraloni C, Di Lorenzo T, Bonetti A. 2021. Impact of light stress on the synthesis of both antioxidant polyphenols and carotenoids as a fast photoprotective response in Chlamydomonas reinhardtii: new prospective for biotechnological potential of this microalga. Symmetry 13(11): 2220. https://doi.org/10.3390/sym131....
 
19.
Fassett RG, Coombes JS. 2012. Astaxanthin in cardiovascular health and disease. Molecules 17(2): 2030–2048. https://doi.org/10.3390/molecu....
 
20.
Fu Y, Wang Y, Yi L, Liu J, Yang S, Liu B, Chen F, Sun H. 2023. Lutein production from microalgae: a review. Bioresour Technol. 376: 128875. https://doi.org/10.1016/ j.biortech.2023.128875.
 
21.
Gaur V, Bera S. 2023. Microbial canthaxanthin: an orangered keto carotenoid with potential pharmaceutical applications. BioTechnologia 104(3): 315–328. https://doi.org/10.5114/bta.20....
 
22.
Grung M, D’Souza FML, Borowitzka M, Liaaen-Jensen S. 1992. Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3′S)-astaxanthin esters. J Appl Phycol. 4(2): 165–171. https://doi.org/10.1007/BF0244....
 
23.
Hamidi M, Safarzadeh KP, Safarzadeh KP, Pierre G, Michaud P, Delattre C. 2020. Marine bacteria versus microalgae: who is the best for biotechnological production of bioactive compounds with antioxidant properties and other biological applications Mar Drugs. 18(1): 28. https://doi.org/10.3390/md1801....
 
24.
Huang L, Gao B, Wu M, Wang F, Zhang C. 2019. Comparative transcriptome analysis of a long-time span two-step culture process reveals a potential mechanism for astaxanthin and biomass hyper-accumulation in Haematococcus pluvialis JNU35. Biotechnol Biofuels. 12(1): 18. https://doi.org/10.1186/s13068....
 
25.
Jo SW, Hong JW, Do JM, Na H, Kim JJ, Park SI, Kim YS, Kim IS, Yoon HS. 2020. Nitrogen deficiency-dependent abiotic stress enhances carotenoid production in indigenous green microalga Scenedesmus rubescens KNUA042 as a potential resource for high-value products. Sustainability. 12(13): 5445. https://doi.org/10.3390/su1213....
 
26.
Khalid M, Saeed-ur-Rahman, Bilal M, Iqbal HMN, Huang D. 2019. Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. Biocatal Agric Biotechnol. 17: 399–407. https://doi.org/10.1016/j.bcab....
 
27.
Kopec RE, Failla ML. 2018. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. J Food Compos Anal. 68: 16–30. https://doi.org/10.1016/j.jfca....
 
28.
Kumar S, Kumar R, Diksha, Kumari A, Panwar A. 2022. Astaxanthin: a super antioxidant from microalgae and its therapeutic potential. J Basic Microbiol. 62(9): 1064–1082. https://doi.org/10.1002/jobm.2....
 
29.
Lemoine Y, Schoefs B. 2010. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res. 106(1–2): 155–177. https://doi.org/10.1007/s11120....
 
30.
Li Q, You J, Qiao T, Zhong D, Yu X. 2022. Sodium chloride stimulates the biomass and astaxanthin production by Haematococcus pluvialis via a two-stage cultivation strategy. Bioresour Technol. 344: 126214. https://doi.org/10.1016/j.bior....
 
31.
Mao X, Zhang Y, Wang X, Liu J. 2020. Novel insights into salinity-induced lipogenesis and carotenogenesis in the oleaginous astaxanthin-producing alga Chromochloris zofingiensis: a multi-omics study. Biotechnol Biofuels. 13(1): 73. https://doi.org/10.1186/s13068....
 
32.
Minhas AK, Hodgson P, Barrow CJ, Adholeya A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol. 7: 546. https://doi.org/10.3389/fmicb.....
 
33.
Mustafa YF. 2024. Harmful free radicals in aging: a narrative review of their detrimental effects on health. Indian J Clin Biochem. 39(2): 154–167. https://doi.org/10.1007/s12291....
 
34.
Oslan SNH, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, Oslan SN, Arumugam K, Ariff AB, Sulaiman AZ, et al. 2021. A review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules 11(2): 256. https://doi.org/10.3390/biom11....
 
35.
Park JS, Chyun JH, Kim YK, Line LL, Chew BP. 2010. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab. 7: 18. https://doi.org/10.1186/1743-7....
 
36.
Patil AD, Kasabe PJ, Dandge PB. 2022. Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin. Nat Prod Bioprospect. 12(1): 25. https://doi.org/10.1007/s13659....
 
37.
Ren Y, Sun H, Deng J, Huang J, Chen F. 2021. Carotenoid production from microalgae: biosynthesis, salinity responses, and novel biotechnologies. Mar Drugs. 19(12): 713. https://doi.org/10.3390/md1912....
 
38.
Seger M, Mammadova F, Villegas-Valencia M, Bastos de Freitas B, Chang C, Isachsen I, Hemstreet H, Abualsaud F, Boring M, Lammers PJ, et al. 2023. Engineered ketocarotenoid biosynthesis in the polyextremophilic red microalga Cyanidioschyzon merolae 10D. Metab Eng Commun. 17: e00226. https://doi.org/10.1016/j.mec.....
 
39.
Shi TQ, Wang LR, Zhang ZX, Sun XM, Huang H. 2020. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae. Front Bioeng Biotechnol. 8: 610. https://doi.org/10.3389/fbioe.....
 
40.
Shin H, Hong SJ, Kim H, Yoo C, Lee H, Choi HK, Lee CG, Cho BK. 2015. Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresour Technol. 194: 57–66. https://doi.org/10.1016/j.bior....
 
41.
Wang T, Ge H, Liu T, Tian X, Wang Z, Guo M, Chu J, Zhuang Y. 2016. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration. J Biotechnol. 228: 18–27. https://doi.org/10.1016/j.jbio....
 
42.
Yao H, Xu Y, Yang H, Guo Y, Jiao P, Xiang D, Xu H, Cao Y. 2025. Glycerol biosynthesis pathways from starch endow Dunaliella salina with the adaptability to osmotic and oxidative effects caused by salinity. Int J Mol Sci. 26(14): 7019. https://doi.org/10.3390/ijms26....
 
43.
Yaqoob S, Riaz M, Shabbir A, Zia-Ul-Haq M, Alwakeel SS, BinJumah M. 2021. Commercialization and marketing potential of carotenoids. In: Zia-Ul-Haq M, Dewanjee S, Riaz M, ed. Carotenoids: structure and function in the human body. Cham: Springer International Publishing, p. 799–826.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top