RESEARCH PAPER
Selection of methods for activated sludge bulking control using a molecular biology technique combined with respirometric tests
 
More details
Hide details
1
Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warszawa, Poland
 
2
Department of Molecular Phylogenetics and Evolution, Institute of Botany, University of Warsaw, Warszawa, Poland
 
 
Submission date: 2016-05-12
 
 
Final revision date: 2016-06-24
 
 
Acceptance date: 2016-06-30
 
 
Publication date: 2016-11-02
 
 
BioTechnologia 2016;97(3):187-193
 
KEYWORDS
TOPICS
ABSTRACT
An excessive proliferation of certain groups of filamentous bacteria results in activated sludge (AS) bulking and foaming. Studies on the efficiency of specific and non-specific methods for AS bulking control were conducted. Polyaluminium compounds (PAX16 and PAX18) were used as specific methods, whereas changes in pH and in temperature were tested among non-specific methods. Floatation of AS was determined by the Alka-Seltzer-test, ability of AS to settle was measured as sludge volume index. Oxygen uptake rate tests were carried out to determine respiratory activity of AS. Fluorescence in situ hybridisation was applied to identify and quantify filamentous bacteria in AS, which cannot be obtained by the conventional method. Two dominant groups of filamentous bacteria – phylum Chloroflexi and genus Microthrix were found in AS samples, the latter was the causative agent for bulking. The nonspecific methods for sludge bulking control (pH/temperature changes) improved the settling properties, however they did not eliminate filamentous bacteria and in some cases decreased sludge respiratory activity. PAX16 (5.7 mg/kg SS) was the most efficient control strategy for bulking caused by Microthrix – it improved settling properties without increasing tendency to foam and did not decrease respiratory activity of AS.
REFERENCES (27)
1.
Albertsen M., Karst S.M., Ziegler A.S., Kirkegaard R.H., Nielsen P.H. (2015) Back to basics – the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PLoS ONE 10(7): e0132783.
 
2.
Andreasen K., Nielsen P.H. (2000) Growth of Microthrix parvicella in nutrient removal activated sludge plants: Studies of in situ physiology. Water Res. 34: 1559-1569.
 
3.
Blackall L.L., Parlett J.H., Hayward A.C., Minnikin D.E., Greenfield P.F., Harbers A.E. (1989) Nocardia pinensis sp.nov. an actinomycete found in activated sludge foams in Australia. J. Gen. Microbiol. 135: 1547-1558.
 
4.
Collins T.J. (2007) ImageJ for microscopy. Biotechniques 43: 25-30.
 
5.
Eikelboom D.H. (1997) Control by Microthrix parvicella by addition of PAX-14. TNO-MEP- R97/305. Appeldoorn: TNO Institute of Environmental Sciences, Energy Research and Process Innovation.
 
6.
Eikelboom D.H. (2000) Process control of activated sludge plants by microscopic investigation. London: IWA Publishing.
 
7.
Jenkins D., Daigger G., Richard M. (2004) Manual on the causes and control of activated sludge bulking, foaming and other solids separation problems. London: IWA Publishing.
 
8.
Kaevska M., Videnska P., Vasickova P. (2016) Changes in microbial composition of wastewater during treatment in a full-scale plant. Curr. Microbiol. 72: 128-132.
 
9.
Kopplow O., Barjenbruch M. (2002) Beurteilung und Weiterentwicklung von Methoden zur Erfassung des Schaumpotentials (Evaluation and development of methods for determination of foam potential). Universität Rostock: Abschlussbericht AZ 1199, Institut für Kulturtechnik und Siedlungswasserwirtschaft.
 
10.
Kościńska K. (2005) Testy biochemiczne jako narzędzie oceny procesów biologicznego oczyszczania ścieków. Ochr. Środ. Zasob. Natural. 28: 25-40.
 
11.
Kragelund C., Remesova Z., Nielsen J.L., Thomsen T.R., Eales K., Seviour R., Wanner J. Nielsen P.H. (2007) Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol. Ecol. 59: 671-682.
 
12.
Kragelund C., Thomsen T.R., Mielczarek A.T., Nielsen P.H. (2011) Eikelboom’s morphotype 0803 in activated sludge belongs to the genus Caldilinea in the phylum Chloroflexi. FEMS Microbiol. Ecol. 76: 451-462.
 
13.
Loy A., Maixner F., Wagner M., Horn M. (2007) ProbeBase - an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucl. Acids Res. 35: D800-D804.
 
14.
Marneri M., Mamais D., Koutsiouki E. (2009) Microthrix parvicella and Gordonia amarae in mesophilic and thermophilic anaerobic digestion systems. Environ. Technol. 30(5): 437-444.
 
15.
Mamais D., Andreadakis A., Noutsopoulos C., Kalergis C. (1998) Causes of, and control strategies for Microthrix parvicella bulking and foaming in nutrient removal activated sludge systems. Wat. Sci. Technol. 37: 9-17.
 
16.
Mielczarek A., Kragelund C., Eriksen P.S., Nielsen P.H. (2012) Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal. Water Res. 46: 3781-3795.
 
17.
Miłobędzka A., Muszyński A. (2015) Population dynamics of filamentous bacteria identified in polish full-scale wastewater treatment plants with nutrients removal. Wat. Sci. Technol. 71(5): 675-684.
 
18.
Miura Y., Watanabe Y., Okabe S. (2007) Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater. Environ. Sci. Technol. 41(22): 7787-7794.
 
19.
Muszyński A., Tabernacka A., Miłobędzka A. (2015) Longterm dynamics of the microbial community in a full-scale wastewater treatment plant. Int. Biodeter. Biodegr. 100: 44-51.
 
20.
Nielsen P.H., Roslev P., Dueholm T.E., Nielsen J.L. (2002) Microthix parvicella, a specialized lipid consumer in anaerobic- aerobic activated sludge plants. Wat. Sci. Technol. 46: 73-80.
 
21.
Nielsen P.H., Kragelund C., Nielsen J.L., Tiro S., Lebek M., Rosenwinkel K.H., Gessesse A. (2005) Control of microthrix parvicella in activated sludge plants by dosage of Polyaluminium salts: possible mechanisms. Acta Hydroch. Hydrob. 33(3): 255-261.
 
22.
Nielsen P.H., Kragelund C., Seviour R.J., Nielsen J.L. (2009a) Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol. Rev. 33: 969-998.
 
23.
Nielsen P.H., Daims H., Lemmer H. (2009b) FISH Handbook for Biological Wastewater Treatment. London: IWA Publishing.
 
24.
Nielsen P.H., Mielczarek A.T., Kragelund C., Nielsen J.L., Saunders A.M., Kong Y., Hansen A.A., Vollertsen J. (2010) A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res. 44: 5070-5088.
 
25.
Paris S., Lind G., Lemmer H., Wilderer P.A. (2005) Dosing aluminum chloride to control Microthrix parvicella. Acta Hydrochim. Hydrobiol. 33(3): 247-254.
 
26.
Roels T., Dauwe F., Van Damme S., De Wilde K., Roelandt F. (2002) The influence of PAX-14 on activated sludge systems and in particular on Microthrix parvicella. Wat. Sci. Technol. 46: 487-490.
 
27.
Wanner J., Kragelund C., Nielsen P.H. (2009) Microbiology of bulking. [in:] Microbial ecology of activated sludge. Ed. Seviour R.J., Nielsen P.H., London: IWA Publishing: 191-214.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top