RESEARCH PAPER
Figure from article: Bioinformatics study of...
 
KEYWORDS
TOPICS
ABSTRACT
Background:
The increasing threat of antibiotic-resistant bacteria is a significant global health concern, with millions of people worldwide infected with these resistant strains each year. This study aims to conduct a bioinformatics analysis to investigate the biotin carboxylase (BC) B-subdomain from Lactococcus lactis subsp. lactis (Lac3) (accession number NZ_JAGRPZ010000035.1) as a potential target for the identification and development of novel antibiotics. Lac3 was isolated from one of the Indonesian traditional probiotics called dadih, and its whole-genome sequence analysis was revealed in a previous study.

Material and methods:
Whole-genome sequencing data of Lac3, generated using the Illumina MiSeq sequencer (Novogene Co., Ltd.), were used to analyze gene clusters with AntiSMASH. Molecular docking (PyRx Virtual Screening Tool; AutoDock Vina) and molecular dynamics simulations (CPPTRAJ software) were performed to elucidate the potential binding sites of the BC B-subdomain and compare them with the BC domain from a L. lactis reference strain (accession number KLK97304). The 3D structure of the BC B-subdomain was predicted using AlphaFold2. Visualization of the simulated protein–ligand complex conformations was conducted using PyMOL v2.3 software.

Results:
Bioinformatics analysis showed that the BC B-subdomain gene was located in the b-lactone gene cluster on contig 7.1 and consisted of 32.1% a-helix, 37.6% b-strand, and 24.8% random coil. Physi­cochemical analysis indicated that the BC B-subdomain protein exhibited a high degree of solubility. The BC B-subdomain shared similarities with the ATP-grasp domain of the BC domain from the reference strain, particularly in amino acid residues involved in ATP binding (His207, Gln231, Asn234, and Glu274). Molecular docking analysis demonstrated that the BC B-subdomain–ATP complex (–6.1 kcal/mol) was comparable to the BC domain–ATP complex (–8.8 kcal/mol). This was supported by molecular dynamics simulations, which indicated that the complex models remained stable throughout the simulations, based on several validation parameters, including RMSD, RMSF, Rg, and SASA. Furthermore, ionic interactions with the phosphate group’s amino acid residues – critical for ATP binding and function within ATP-grasp enzymes – were observed in both the BC B-subdomain (His207 and Lys236) and the BC domain (Lys236 and Arg290).

Conclusions:
These findings suggest that the BC B-subdomain could serve as a potential target for fragment-based drug discovery and may provide a reference for developing novel BC inhibitors with potent antibacterial activity by targeting ATP binding, possibly through its phosphate group binding sites. However, further analysis is needed to support the development of innovative antibacterial treatments in the future.
REFERENCES (59)
1.
Agu PC, Afiukwa CA, Orji OU, Ezeh AM, Ofoke IH, Ogby CO, Uhwuja EI, Aja PM. 2023. Molecular docking as a tool for the discovery of molecular targets of neutraceuticals in disease management. Sci Rep. 13: 13398. https://doi.org/10.1038/s41598....
 
2.
Arwansyah A, Ambarsari L, Sukmaryada TI. 2014. Docking simulation of curcumin and its analogs as androgen receptor inhibitors in prostate cancer. Curr Biochem. 1(1): 11–19. https://doi.org/10.29244/cb.1.....
 
3.
Arwansyah A, Arif AR, Kade A, Taiyeb M, Ramli I, Santoso T, Ningsih P, Natsir H, Tahril T, Uday Kumar K. 2022a. Molecular modelling on multiepitope-based vaccine against SARS-CoV-2 using immunoinformatics, molecular docking, and molecular dynamics simulation. SAR QSAR Environ Res. 33(9): 649–675. https://doi.org/10.1080/106293....
 
4.
Arwansyah A, Arif AR, Ramli I, Hasrianti H, Kurniawan I, Ambarsari L, Sumaryada TI, Taiyeb M. 2022b. Investigation of active compounds of Brucea javanica in treating hypertension using a network pharmacology-based analysis combined with homology modeling, molecular docking and molecular dynamics simulation. Chemistry Select 7(1): e202102801. https://doi.org/10.1002/slct.2....
 
5.
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. 2021. AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49(W1): W29–35. https://doi.org/10.1093/nar/gk....
 
6.
Bonet LFS, Loureiro JP, Pereira GRC, Da Silva ANR, De Mesquita JF. 2021. Molecular dynamics and protein frustration analysis of human fused in sarcoma protein variants in amyotrophic lateral sclerosis type 6: an in silico approach. PLoS One. 16(9): e0258061. https://doi.org/10.1371/journa....
 
7.
Broussard TC, Kobe MJ, Pakhomova S, Neau DB, Price AE, Champion TS, Waldrop GL. 2013. The three-dimensional structure of the biotin carboxylase-biotin carboxyl carrier protein complex of E. coli acetyl-CoA carboxylase. Structure 21(4): 650–657. https://doi.org/10.1016/j.str. 2013.02.001.
 
8.
Brylinski M, Waldrop GL. 2014. Computational redesign of bacterial biotin carboxylase inhibitors using structure-based virtual screening of combinatorial libraries. Mole­cules. 19(4): 4021–4045. https://doi.org/10.3390/molecu....
 
9.
Cahyani RD, Mustopa AZ, Umami RN, Firdaus MER, Manguntungi AB, Arwansyah A. 2023. Molecular docking analysis for screening of cyclooxygenase-2 inhibitors from secondary metabolite compounds of Lactococcus lactis subsp. lactis (Lac3). Philipp J Sci. 152(4): 1307–1324. https://doi.org/10.56899/152.0....
 
10.
Carugo O, Djinovic-Carugo K. 2013. Half a century of Rama­chandran plots. Acta Crystallogr D Biol Crystallogr. 69(8): 1333–1341. https://doi.org/10.1107/S09074....
 
11.
Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, et al. 2018. AMBER 2018. San Francisco: University of California.
 
12.
Cavanagh D, Casey A, Altermann E, Cotter PD, Fitzgerald GF, McAuliffe O. 2015. Evaluation of Lactococcus lactis isolates from nondairy sources with potential dairy applications reveals extensive phenotype-genotype disparity and implications for a revised species. Appl Environ Microbiol. 81(12): 3961–3972. https://doi.org/10.1128/AEM.04....
 
13.
Chène P. 2002. ATPases as drug target: Learning from their structure. Nat Rev Drug Discov. 1: 665–673. https://doi.org/10.1038/nrd894.
 
14.
Choi PH, Vu TMN, Pham HT, Woodward JJ, Turner MS, Tong L. 2017. Structural and functional studies of pyruvate carbo­xylase regulation by cyclic di-AMP in lactic acid bacteria. Proc Natl Acad Sci USA. 114(35): E7226–E7235. https://doi.or/10.1073/pnas.17....
 
15.
Clabaut M, Boukerb AM, Racine PJ, Pichon C, Kremser C, Queiroz A, Karsybayeva M, Redziniak G, Chevalier S, Feuilloley MGJ. 2019. Draft genome sequence of Lactobacillus crispatus strain V4, isolated from a vaginal swab from a young healthy nonmenopausal woman. Microbiol Resour Announc. 8(38): e00856–19. http://doi.org/10.1128/MRA.008....
 
16.
Coste M, Rochet V, Léonil J, Mollé D, Bouhallab S, Tomé D. 1992. Identification of C-terminal peptides of bovine beta-casein that enhance proliferation of rat lymphocytes. Immunol Lett. 33(1): 41–46. https://doi.org/10.1016/0165-2....
 
17.
Craft MK, Waldrop GL. 2022. Mechanism of biotin carboxylase inhibition by ethyl 4-[[2-chloro-5-(phenylcarbamoyl)phenyl]sulphonylamino] benzoate. J Enzyme Inhib Med Chem. 37(1): 100–108. https://doi.org/10.1080/147563....
 
18.
DasGupta D, Kaushik R, Jayaram B. 2015. From Ramachan­dran maps to tertiary structures of proteins. J Phys Chem B. 119(34): 11136–11145. https://doi.org/10.1021/acs.jp....
 
19.
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. 2016. Insight into protein-ligand interaction: mechanism, models, and methods. Int J Mol Sci. 17(2): 144. https://doi.org/10.3390/ijms20....
 
20.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Peder­sen LG. 1995. A smooth particle mesh Ewald method. J Chem Phys. 103(19): 8577–8593. https://doi.org/10.1063/1.4701....
 
21.
Fawaz MV, Topper ME, Firestine SM. 2011. The ATP-grasp enzymes. Bioorg Chem. 39(5–6): 185–191. https://doi.org/10.1016/j.bioo....
 
22.
Głowacki ED, Irimia-Vladu M, Bauer S, Sariciftci NS. 2013. Hydrogen-bonds in molecular solids – from biological systems to organic electronics. J Mater Chem B. 1(31): 3742–3753. https://doi.org/10.1039/C3TB20....
 
23.
Hasim H, Mustopa AZ, Andrianto N, Fatimah, Faridah DN. 2017. Antioxidant production of lactic acid bacteria isolated from Indonesian traditional fermented buffalo milk (dadih). IOSR-JPBS. 12(5): 76–82. https://doi.org/10.9790/3008-1....
 
24.
Jitrapakdee S, Wallace JC. 1999. Structure, function and regulation of pyruvate carboxylase. Biochem J. 340 (Pt 1): 1–16. https://doi.org/10.1042/bj3400....
 
25.
Jitrapakdee S, Maurice MS, Rayment I, Cleland WW, Wallace JC, Attwoods VP. 2008. Structure, mechanism and regulation of pyruvate carboxylase. Biochem J. 413: 369–387. https://doi.org/10.1042/BJ2008....
 
26.
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 1983. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 79(2): 926–935. https://doi.org/10.1063/1.4458....
 
27.
Land H, Humble MS. 2018. YASARA: A tool to obtain structural guidance in biocatalytic investigations. Methods Mol Biol. 1685: 43–67. https://doi.org/10.1007/978-1-....
 
28.
Laurino P, Tóth-Petróczy Á, Meana-Pañeda R, Lin W, Truhlar DG, Tawfik DS. 2016. An ancient fingerprint indicates the common ancestry of Rossmann-Fold enzymes utilizing different ribose-based cofactors. PLoS Biol. 14(3): e1002396. https://doi.org/ 10.1371/journal.pbio.1002396.
 
29.
Li Y, Brodsky B, Baum J. 2007. NMR shows hydrophobic interactions replace glycine packing in the triple helix at a natural break in the (Gly-X-Y)n repeat. J Biol Chem. 282 (31): P22699–P22706. https://doi.org/10.1074/jbc.M7....
 
30.
Lopez-Alonso JP, Lazaro M, Gil-Carton D, Choi PH, Dodu A, Tong L, Valle M. 2022. CryoEM structural exploration of catalytically active enzyme pyruvate carboxylae. Nat Commun. 13: 6185. https://doi.org/10.1038/s41467....
 
31.
Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hau­ser KE, Simmerling C. 2015. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 11(8): 3696–3713. https://doi.org/10.1021/acs.jc....
 
32.
Miller JR, Dunham S, Mochalkin I, Banotai C, Bowman M, Buist S, Dunkle B, Hanna D, Harwood HJ, Huband MD, et al. 2009. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proc Natl Acad Sci USA. 106: 1737–1742. https://doi.org/10.1073/pnas.0....
 
33.
Mochalkin I, Miller JR, Evdokimov A, Lightle S, Yan C, Stover CK, Waldrop GL. 2008. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase. Protein Sci. 7: 1706–1718. https://doi.org.10.1110/ps.035....
 
34.
Morris GM, Huey R, Olson AJ. 2008. Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics. Chapter 8: Unit 8.14. https://doi.org/10.1002/047125....
 
35.
Muscat S, Pallante L, Stojceski F, Danani A, Grasso G, De-riu MA. 2020. The impact of natural compounds on S-shaped Ab42 fibril: From molecular docking to biophy­sical characterization. Intl J Mol Sci. 21(6): 2017. https://doi.org/10.3390/ijms21....
 
36.
Mustopa AZ, Meilina L, Irawan S, Ekawati N, Fathurahman AT, Triratna L, Kusumawati A, Prastyowati A, Nurfatwa M, Hertati A, Harmoko R. 2022. Construction, expression, and in vitro assembly of virus-like particles of L1 protein of human papillomavirus type 52 in Escherichia coli BL21 DE3. J Genet Eng Biotechnol. 20(1): 19. https://doi.org/10.1186/s43141....
 
37.
Mustopa AZ, Izaki AF, Suharsono S, Fatimah F, Fauziyah F, Damarani R, Arwansyah A, Wahyudi ST, Sari SS, Rozirwan R. 2023. Characterization, protein modeling, and molecular docking of factor C from Indonesian horseshoe crab (Tachypleus gigas). J Genet Eng Biotechnol. 21(1): 44. https://doi.org/10.1186/s43141....
 
38.
Nielsen MS, Martinussen T, Flambard B, Sørensen KI, Otte J. 2009. Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation pH, and storage time. Int Dairy J. 19(3): 155–165. https://doi.org/10.1016/j.idai....
 
39.
Niwa T, Ying BW, Saito K, Jin W, Takada S, Ueda T, Taguchi H. 2009. Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Esche­richia coli proteins. Proc Natl Acad Sci USA. 106(11): 4201–4206. https://doi.org/10.1073/pnas.0....
 
40.
Pederick JL, Thompson AP, Bell SG, Bruning JB. 2020. D-alanine-D-alanine ligase as a model for the activation of ATP-grasp enzymes by monovalent cations. J Biol Chem. 295(23): 7894–7904. https://doi.org/10.1074/jbc.RA....
 
41.
Peña-Ramos EA, Xiong YL, Arteaga GE. 2004. Fractionation and characterization for antioxidant activity of hydrolysed whey protein. J Sci Food Agric. 84(14): 1908–1918. https://doi.org/10.1002/jsfa.1....
 
42.
Renner LD, Zan J, Hu LI, Martinez M, Resto PJ, Siegel AC, Torres C, Hall SB, Slezak TR, Nguyen TH, Weibel DB. 2017. Detection of ESKAPE bacterial pathogens at the point of care using isothermal DNA-based assays in a port­able degas-actuated microfluidic diagnostic assay platform. Appl Environ Microbiol. 83: e02449-16. https://doi.org/10.1128/AEM.02....
 
43.
Roe DR, Cheatham TE. 2013. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 9(7): 3084–3095. https://doi.org/10.1021/ct4003....
 
44.
Romero ML, Yang F, Lin YR, Toth-Petroczy A, Berezovsky IN, Goncearenco A, Yang W, Wellner A, Kumar-Deskmukh F, Sharon M, et al. 2018. Simple yet functional phosphate-loop proteins. PNAS 115 (51): E11943–E11950. https://doi.org/10.1073/pnas.1....
 
45.
Ryckaert JP, Ciccotti G, Berendsen HJC. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 23(3): 327–341. https://doi.org/10.1016/0021-9....
 
46.
Salomon-Ferrer R, Case DA, Walker RC. 2013. An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science. 3(2): 198–210. https://doi.org/10.1002/wcms.1....
 
47.
Sambrook J, Russell D. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press.
 
48.
Sirois S, Proynov EI, Nguyen DT, Salahub DR. 1997. Hydrogen-bonding in glycine and malonaldehyde: performance of the Lap1 correlation functional. J Chem Phys 107: 6770–6781. https://doi.org/10.1063/1.4749....
 
49.
Škedelj V, Tomašić T, Mašič LP, Zega A. 2011. ATP-binding site of bacterial enzymes as a target for antibacterial drug design. J Med Chem. 54(4): 915–929. https://doi.org/10.1021/jm1011....
 
50.
Sueda S, Islam MN, Kondo H. 2004. Protein engineering of pyruvate carboxylase. Eur J Biochem. 271: 1391–1400. https://doi.org/10.1111/j.1432....
 
51.
Surono IS, Hosono A. 2000. Performance of dadih cultures in fluid milk application at low-temperature storage. Asian Aus J Anim Sci. 13: 495–498.
 
52.
Sylvere N, Mustopa AZ, Budiarti S, Meilina L, Hertati A, Handayani I. 2023. Whole-genome sequence analysis and probiotic characteristics of Lactococcus lactis subsp. lactis strain Lac3 isolated from traditional fermented buffalo milk (Dadih). J Genet Eng Biotechnol. 21(1): 49. https://doi.org/10.1186/s43141....
 
53.
Thoden JB, Blanchard CZ, Holden HM, Waldrop GL. 2000. Movement of the biotin carboxylase B-domain as a result of ATP binding. J Biol Chem. 275(21): 16183–16190. https://doi.org/10.1074/jbc.27....
 
54.
Tian W, Chen C, Lei X, Zhao J, Liang J. 2018. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 46(W1): W363–W367. https://doi.org/10.1093/nar/gk....
 
55.
Waldrop GL, Rayment I, Holden HM. 1994. Three-dimensional structure of the biotin carboxylase subunit of acetyl CoA carboxylase. Biochemistry 33(34): 10249–10256. https://doi.org/10.1021/bi0020....
 
56.
Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 13(6): e1005595. https://doi.org/10.1371/journa....
 
57.
Yahfoufi N, Mallet JF, Graham E, Matar C. 2018. Role of pro­biotics and prebiotics in immunomodulation. Curr Opin Food Sci. 20: 82–91. https://doi.org/10.1016/j.cofs....
 
58.
Yu LPC, Chou CY, Choi PH, Tong L. 2013. Characterizing the importance of the biotin carboxylase dimer for Staphylococcus aureus pyruvate carboxylase catalysis. J Am Chem Soc. 52(3): 488–496. https://doi.org/10.1021/bi3012....
 
59.
Zaelani BFD, Safithri M, Andrianto D. 2021. Molecular docking of red betel (Piper crocatum Ruiz and Pav) bioactive compound as HMG-CoA Reductase Inhibitor. J Sci Appl Chem. 24(3): 101–107. https://doi.org/10.14710/jksa.....
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top