RESEARCH PAPER
Figure from article: In silico prediction of...
 
KEYWORDS
TOPICS
ABSTRACT
Background:
Helicobacter pylori infects approximately half of the global population, leading to gastric and duodenal ulcers. Despite the availability of antibiotics, challenges such as patient reluctance, high treatment costs, and antibiotic resistance limit their effectiveness, making vaccination a promising alternative. This study used immunoinformatics to identify candidate epitopes for a multiepitope vaccine construct against H. pylori.

Material and methods:
The protein variability server was utilized for conservation analysis. The epitopes were screened for antigenicity, allergenicity, toxicity, cross-reactivity, and population coverage. Selected epitopes were docked with their corresponding human leukocyte antigen (HLA) alleles, and thermodynamic quantities were determined. Five virulence factors – HopZ, SabA, HP-NAP, OipA, and urease – were selected for their critical roles in bacterial adhesion, immune modulation, and stress survival.

Results:
Conservation analysis revealed a highly conserved protein sequence (Shannon index £ 0.1). The predicted epitopes had an IC50 value of £ 500 nM, indicating strong binding to the corresponding HLAs, with an estimated population coverage of more than 90% in the Southeast Asian region. The predicted epitopes were identified as probable nonallergens, nontoxic, and noncross-reactive (E value >1.0). Molecular docking analysis showed that the candidate epitopes could bind strongly and spontaneously with their corresponding HLA proteins, as evidenced by low negative Gibbs free energy (DG) values and dissociation constants (KD < 100 nM).

Conclusions:
The epitopes predicted from the five virulence factors present promising candidates for future H. pylori vaccine design. Further in vitro and in vivo experiments are recommended to validate these preliminary findings.
REFERENCES (79)
1.
Ali A, AlHussaini K. 2024. Helicobacter pylori: A contemporary perspective on pathogenesis, diagnosis and treatment strategies. Microorganisms 12(1): 222–222. https://doi.org/10.3390/microo....
 
2.
Al-Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, Venkatraman G, Goh K, Ho B, Vadivelu J. 2017. Helicobacter pylori outer inflammatory protein A (OipA) suppresses apoptosis of AGS gastric cells in vitro. Cell Microbiol. 19(12): e12771. https://doi.org/10.1111/cmi.12....
 
3.
Alzahrani S, Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. 2014. Effect of Helicobacter pylori on gastric epi­thelial cells. World J Gastroenterol. 20(36): 12767–12780. https://doi.org/10.3748/wjg.v2....
 
4.
Arora N, Keshri AK, Kaur R, Rawat SS, Prasad A. 2022. Immunoinformatic approaches for vaccine designing for pathogens with unclear pathogenesis. Methods Mol Biol. 2412: 425–437.
 
5.
Arya H, Bhatt TK. 2021. Design of vaccine constructs. In: Bhatt TK, Nimesh S (eds.). The design & development of novel drugs and vaccines. Academic Press, pp. 109–119. https://doi.org/10.1016/B978-0....
 
6.
Barazesh M, Abbasi M, Mohammadi M, Nasiri MN, Rezaei F, Mohammadi S, Kavousipour S. 2024. Bioinformatics analysis to design a multi-epitope mRNA vaccine against S. agalactiae exploiting pathogenic proteins. Sci Rep. 14(1): 28294. https://doi.org/10.1038/s41598....
 
7.
Blackshields G, Sievers F, Shi W, Wilm A, Higgins DG. 2010. Sequence embedding for fast construction of guide trees for multiple sequence alignment. Algorithms Mol Biol. 5(1): 21. https://doi.org/10.1186/1748-7....
 
8.
Bragais EKB, Herald FM III, Fernandez KCJ, Caoili SEC, Herrera-Ong LR. 2025. In silico screening and identification of CTL and HTL epitopes in the secreted virulence factors of Mycobacterium tuberculosis. BioTechnologia 106(1): 63–76. https://doi.org/10.5114/bta/20....
 
9.
Chakraborty C, Sharma AR, Bhattacharya M, Sharma G, Lee SS. 2021. Immunoinformatics approach for the identification and characterization of T cell and B cell epitopes towards the peptide-based vaccine against SARS-CoV-2. Arch Med Res. 52(4): 362–370. https://doi.org/10.1016/j.arcm....
 
10.
Chaleshtori ZA, Rastegari AA, Nayeri H, Doosti A. 2023. Use of immunoinformatics and the simulation approach to identify Helicobacter pylori epitopes to design a multi-epitope subunit vaccine for B- and T-cells. BMC Biotechnol. 23(1): 1–16. https://doi.org/10.1186/s12896....
 
11.
Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC. 2016. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2(3): e1501240. https://doi.org/10.1126/sciadv....
 
12.
Chen Y, Malfertheiner P, Yu H, Kuo C, Chang Y, Meng F, Wu Y, Hsiao J, Chen M, Lin K, et al. 2024. Global prevalence of Helicobacter pylori infection and incidence of gastric cancer between 1980 and 2022. Gastroenterology 166(4): 605–619. https://doi.org/10.1053/j.gast....
 
13.
Cun Y, Li C, Shi L, Sun M, Dai S, Sun L, Shi L, Yao Y. 2020. COVID-19 coronavirus vaccine T cell epitope prediction analysis based on distributions of HLA class I loci (HLA-A, -B, -C) across global populations. Hum Vaccin Immunother. 17(4): 1097–1108. https://doi.org/10.1080/216455....
 
14.
Del Giudice G, Malfertheiner P, Rappuoli R. 2009. Development of vaccines against Helicobacter pylori. Expert Rev Vaccines 8(8): 1037–1049. https://doi.org/10.1586/erv.09....
 
15.
Dimitrov I, Naneva L, Doytchinova I, Bangov I. 2013. AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics 30(6): 846–851. https://doi.org/10.1093/bioinf....
 
16.
Doytchinova I, Hemsley S, Flower DR. 2004. Transporter associated with antigen processing preselection of peptides binding to the MHC: A bioinformatic evaluation. J Immunol. 173(11): 6813–6819. https://doi.org/10.4049/jimmun....
 
17.
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. 2016. Insights into protein–ligand interactions: Mechanisms, models, and methods. Int J Mol Sci. 17(2): 144. https://doi.org/10.3390/ijms17....
 
18.
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, AlMutairi T, Alsaedi A,et al. 2025. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med. 11: 1523991. https://doi.org/10.3389/fmed.2....
 
19.
Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, Sette A. 2017. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front Immunol. 8: 278. https://doi.org/10.3389/fimmu.....
 
20.
Frahm N, Yusim K, Suscovich TJ, Adams S, Sidney J, Hraber P, Hewitt HS, Linde CH, Kavanagh DG, Woodberry T, et al. 2007. Extensive HLA class I allele promiscuity among viral CTL epitopes. Eur J Immunol. 37(9): 2419–2433. https://doi.org/10.1002/eji.20....
 
21.
Fu H. 2014. Helicobacter pylori neutrophil-activating protein: From molecular pathogenesis to clinical applications. World J Gastroenterol. 20(18): 5294. https://doi.org/10.3748/wjg.v2....
 
22.
Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA. 2008. PVS: A web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res. 36(Web Server): W35–W41. https://doi.org/10.1093/nar/gk....
 
23.
Ginodi I, Vider-Shalit T, Tsaban L, Louzoun Y. 2008. Precise score for the prediction of peptides cleaved by the proteasome. Bioinformatics 24(4): 477–483. https://doi.org/10.1093/bioinf....
 
24.
Gowthaman U, Agrewala JN. 2008. In silico tools for predicting peptides binding to HLA-class II molecules: More confusion than conclusion. J Proteome Res. 7(1): 154–163. https://doi.org/10.1021/pr0705....
 
25.
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Rag­hava GPS. 2013. In silico approach for predicting toxicity of peptides and proteins. PLoS One 8(9): e73957. https://doi.org/10.1371/journa....
 
26.
Haghighi FH, Menbari S, Mohammadzadeh R, Pishdadian A, Farsiani H. 2024. Developing a potent vaccine against Helicobacter pylori: Critical considerations and challenges. Expert Rev Mol Med. 1–61. https://doi.org/10.1017/erm.20....
 
27.
Hauswedell H, Hetzel S, Gottlieb SG, Kretzmer H, Meissner A, Reinert K. 2024. Lambda3: Homology search for protein, nucleotide, and bisulfite-converted sequences. Bioinformatics 40(3): btae097. https://doi.org/10.1093/bioinf....
 
28.
Immune Epitope Database. Population coverage help. (n.d.) Iedb.org. Retrieved July 7, 2024. http://tools.iedb.org/populati....
 
29.
Jebali A, Esmaeilzadeh A, Esmaeilzadeh MK, Shabani S. 2024. Immunoinformatics design and synthesis of a multi-epitope vaccine against Helicobacter pylori based on lipid nanoparticles. Sci Rep. 14(1): 1–7. https://doi.org/10.1038/s41598....
 
30.
Jeffrey GA. 1998. An introduction to hydrogen bonding. Choice Rev Online 35(06): 35–3309. https://doi.org/10.5860/choice....
 
31.
Kalali B, Mejías-Luque R, Javaheri A, Gerhard M. 2014. Helicobacter pylori virulence factors: Influence on immune system and pathology. Mediat Inflamm. 2014: 1–9. https://doi.org/10.1155/2014/4....
 
32.
Kamran M. 2021. Fuel cell. In: Elsevier eBooks, pp. 221–242. https://doi.org/10.1016/b978-0....
 
33.
Karosiene E, Lundegaard C, Lund O, Nielsen M. 2012. Net­MHCcons: A consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64(3): 177–186. https://doi.org/10.1007/s00251....
 
34.
Kaur G, Danovaro-Holliday MC, Mwinnyaa G, Gacic-Dobo M, Francis L, Grevendonk J, Sodha SV, Sugerman C, Wallace A. 2023. Routine vaccination coverage – Worldwide, 2022. MMWR Morb Mortal Wkly Rep. 72(43): 1155–1161. https://doi.org/10.15585/mmwr.....
 
35.
Keshri AK, Kaur R, Rawat SS, Arora N, Pandey RK, Kumbhar BV, Mishra A, Tripathi S, Prasad A. 2023. Designing and development of multi-epitope chimeric vaccine against Helicobacter pylori by exploring its entire immunogenic epitopes: An immunoinformatic approach. BMC Bioinform. 24(1): 358. https://doi.org/10.1186/s12859....
 
36.
Kharel S, Bist A, Shrestha S, Homagain S. 2020. Helicobacter pylori healthy South Asians. JGH Open 4(6): 1037–1046. https://doi.org/10.1002/jgh3.1....
 
37.
Kim SY, Choi DJ, Chung JW. 2015. Antibiotic treatment for Helicobacter pylori: Is the end coming? World J Gastrointest Pharmacol Ther. 6(4): 183–198. https://doi.org/10.4292/wjgpt.....
 
38.
Kusters JG, van Vliet AH, Kuipers EJ. 2006. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev. 19(3): 449–490. https://doi.org/10.1128/CMR.00....
 
39.
Lehnert E, Tampé R. 2017. Structure and dynamics of antigenic peptides in complex with TAP. Front Immunol. 8: 10. https://doi.org/10.3389/fimmu.....
 
40.
Li S, Zhao W, Xia L, Kong L, Yang L. 2023. How long will it take to launch an effective Helicobacter pylori vaccine for humans? Infect Drug Resist. 16: 3787–3805. https://doi.org/10.2147/IDR.S4....
 
41.
Longmate J, La Rosa C, York J, Krishnan R, Zhang M, Seni-tzer D, Diamond DJ. 2001. Population coverage by HLA class-I restricted cytotoxic T-lymphocyte epitopes. Immunogenetics 52(3–4): 165–173. https://doi.org/10.1007/s00251....
 
42.
Mahmud S, Rafi MO, Paul GK, Promi MM, Shimu MSS, Biswas S, Emran TB, Dhama K, Alyami SA, Moni MA, Saleh MA. 2021. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci Rep. 11(1): 1–20. https://doi.org/10.1038/s41598....
 
43.
Malik T, Gnanapandithan K, Singh K. 2023. Peptic ulcer disease. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
 
44.
McRee DE. 1999. Computational techniques. In: Elsevier eBooks, pp. 91-cp1. https://doi.org/10.1016/b978-0....
 
45.
Meza B, Ascencio F, Sierra-Beltrán AP, Torres J, Angulo C. 2017. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: An in silico approach. Infect Genet Evol. 49: 309–317. https://doi.org/10.1016/j.meeg....
 
46.
Mortazavi B, Molaei A, Allahyari Fard N. 2024. Multi-epitope vaccines, from design to expression; An in silico approach. Hum Immunol. 85(3): 110804. https://doi.org/10.1016/j.humi....
 
47.
Mulpuru V, Mishra N. 2021. Immunoinformatic based identification of cytotoxic T lymphocyte epitopes from the Indian isolate of SARS-CoV-2. Sci Rep. 11(1): 4516. https://doi.org/10.1038/s41598....
 
48.
Muñoz A, Stepanian J, Trespalacios AA, Vale F. 2020. Bacteriophages of Helicobacter pylori. Front Microbiol. 11: 549084. https://doi.org/10.3389/fmicb.....
 
49.
Najafian N, Riella LV. 2019. Transplantation immunobiology. In: Chronic Kidney Disease, Dialysis, and Transplantation. Elsevier, pp. 555–569.e4. https://doi.org/10.1016/b978-0....
 
50.
Olawade DB, Teke J, Fapohunda O, Weerasinghe K, Usman SO, Ige AO, David-Olawade AC. 2024. Leveraging artificial intelligence in vaccine development: A narrative review. J Microbiol Methods 224: 106998. https://doi.org/10.1016/j.mime....
 
51.
Osterloh A. 2022. Vaccination against bacterial infections: Challenges, progress, and new approaches with a focus on intracellular bacteria. Vaccines 10(5): 751. https://doi.org/10.3390/vaccin....
 
52.
Pachathundikandi SK, Müller A, Backert S. 2016. Inflammasome activation by Helicobacter pylori and its implications for persistence and immunity. Curr Top Microbiol Immunol. 397: 117–131. https://doi.org/10.1007/978-3-....
 
53.
Pahari S, Chatterjee D, Negi S, Kaur J, Singh B, Agrewala JN. 2017. Morbid sequences suggest molecular mimicry between microbial peptides and self-antigens: A possibility of inciting autoimmunity. Front Microbiol. 8: 1938. https://doi.org/10.3389/fmicb.....
 
54.
Pan Y, Sackmann EK, Wypisniak K, Hornsby M, Datwani SS, Herr AE. 2016. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis. Sci Rep. 6(1): 39774. https://doi.org/10.1038/srep39....
 
55.
Paul S, Weiskopf D, Angelo MA, Sidney J, Peters B, Sette A. 2013. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J Immunol. 191(12): 5831–5839. https://doi.org/10.4049/jimmun....
 
56.
Pearson WR. 2013. An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinformatics 42(1). https://doi.org/10.1002/047125....
 
57.
Peters B, Bulik S, Tampe R, van Endert PM, Holzhütter HG. 2003. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol. 171(4): 1741–1749. https://doi.org/10.4049/jimmun....
 
58.
Peters B, Nielsen M, Sette A. 2020. T cell epitope predictions. Annu Rev Immunol. 38(1): 123–145. https://doi.org/10.1146/annure....
 
59.
Prawiningrum AF, Paramita RI, Panigoro SS. 2022. Immuno­informatics approach for epitope-based vaccine design: Key steps for breast cancer vaccine. Diagnostics 12(12): 2981. https://doi.org/10.3390/diagno....
 
60.
Protein Variability Server. (n.d.) Protein Variability Server help. Med.ucm.es. http://imed.med.ucm.es/PVS/pvs....
 
61.
Qin S, Li L, Min J. 2017. Chapter 3 – The chromodomain of polycomb. In: Polycomb Group Proteins, pp. 33–56. https://doi.org/10.1016/b978-0....
 
62.
Quach DT, Vilaichone R, Van Vu K, Yamaoka Y, Sugano K, Mahachai V. 2018. Helicobacter pylori infection and related gastrointestinal diseases in Southeast Asian countries: An expert opinion survey. Asian Pac J Cancer Prev. 19(12): 3565–3569. https://doi.org/10.31557/apjcp....
 
63.
Quebral EPB, Badua CLD, Tantengco OAG. 2022. Helicobacter pylori infection and the risk of gastric cancer in the Philippines. Lancet Reg Health West Pac. 23: 100475. https://doi.org/10.1016/j.lanw....
 
64.
Rathore AS, Arora A, Choudhury S, Tijare P, Raghava GPS. 2023. ToxinPred 3.0: An improved method for predicting the toxicity of peptides. bioRxiv: 2023.08.11.552911. https://doi.org/10.1101/2023.0....
 
65.
Rencilin CF, Rosy JC, Mohan M, Coico R, Sundar K. 2021. Identification of SARS-CoV-2 CTL epitopes for development of a multivalent subunit vaccine for COVID-19. Infect Genet Evol. 89: 104712. https://doi.org/10.1016/j.meeg....
 
66.
Sarabi PA, Rismani E, Shabanpouremam M, Talehahmad S, Vosough M. 2025. Developing a multi-epitope vaccine against Helicobacter pylori. Hum Immunol. 86(1): 111212. https://doi.org/10.1016/j.humi....
 
67.
Sarvmeili J, Baghban Kohnehrouz B, Gholizadeh A, Shaneh­bandi D, Ofoghi H. 2024. Author correction: Immunoinformatics design of a structural proteins driven multi-epitope candidate vaccine against different SARS-CoV-2 variants based on fynomer. Sci Rep. 14(1): 30524. https://doi.org/10.1038/s41598....
 
68.
Satin B, Del Giudice G, Della Bianca V, Dusi S, Laudanna C, Tonello F, Kelleher D, Rappuoli R, Montecucco C, Rossi F. 2000. The neutrophil-activating protein (Hp-Nap) of Heli­cobacter pylori is a protective antigen and a major virulence factor. J Exp Med. 191(9): 1467–1476. https://doi.org/10.1084/jem.19....
 
69.
Schöttker B, Adamu MA, Weck MN, Brenner H. 2012. Helicobacter pylori infection is strongly associated with gastric and duodenal ulcers in a large prospective study. Clin Gastroenterol Hepatol. 10(5): 487–493.e1. https://doi.org/10.1016/j.cgh.....
 
70.
Sedarat Z, Taylor-Robinson AW. 2024. Helicobacter pylori outer membrane proteins and virulence factors: Potential targets for novel therapies and vaccines. Pathogens 13(5): 392. https://doi.org/10.3390/pathog....
 
71.
Sharndama HC, Mba IE. 2022. Helicobacter pylori: An up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol. 53(1): 33-50. https://doi.org/10.1007/s42770....
 
72.
Sievers F, Higgins DG. 2018. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27(1): 135–145. https://doi.org/10.1002/pro.32....
 
73.
Sollano J. 2015. Changing epidemiology of Helicobacter infection in Asian countries: Epidemiological characteristics of Helicobacter pylori infection in Philippines. In: Helicobacter and Upper Gastrointestinal Research. https://www.hpylori.or.kr/pdf/....
 
74.
Testa JS, Philip R. 2012. Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications. Future Virol. 7(11): 1077–1088. https://doi.org/10.2217/fvl.12....
 
75.
Weber CA, Mehta PJ, Ardito M, Moise L, Martin B, De Groot AS. 2009. T cell epitope: Friend or foe? Immunogenicity of biologics in context. Adv Drug Deliv Rev. 61(11): 965–976. https://doi.org/10.1016/j.addr....
 
76.
World Health Organization. 2017. International coordinating group on vaccine provision for yellow fever: Report of the annual meeting, Geneva, 11–12 May 2017. World Health Organization. https://iris.who.int/handle/10....
 
77.
Ysrafil Y, Sapiun Z, Astuti I, Anasiru MA, Slamet NS, Hartati H, Husain F, Damiti SA. 2022. Designing multi-epitope based peptide vaccine candidates against SARS-CoV-2 using immunoinformatics approach. BioImpacts 12(4): 359–370. https://doi.org/10.34172/bi.20....
 
78.
Yunle K, Tong W, Jiyang L, Guojun W. 2024. Advances in Heli­cobacter pylori vaccine research: From candidate antigens to adjuvants – A review. Helicobacter 29(1): e13034. https://doi.org/10.1111/hel.13....
 
79.
Yurina V. 2020. Coronavirus epitope prediction from highly conserved region of spike protein. Clin Exp Vaccine Res. 9(2): 169–173. https://doi.org/10.7774/cevr.2....
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top