REVIEW PAPER
Biotechnology and bioeconomy of complex traits in crop plants
 
More details
Hide details
1
Rafalski Consulting, Greenville, DE, United States
 
 
Submission date: 2016-09-15
 
 
Final revision date: 2016-10-26
 
 
Acceptance date: 2016-10-31
 
 
Publication date: 2017-05-25
 
 
BioTechnologia 2017;98(1):67-71
 
KEYWORDS
TOPICS
ABSTRACT
Most important crop productivity traits, such as yield under normal and environmental stress conditions, are determined by a large number of genes, each with a small phenotypic effect. Genetic improvement of these traits through breeding or genetic engineering has been frustrating researchers in academia and industry. The reasons for this include the complexity of the traits, the difficulty of precise phenotyping and the lack of validated candidate genes. Different approaches to the discovery of the genetic architecture of such traits, such as Genetic Association Mapping and Genomic Selection and their engineering, are expected to yield benefits for farmers and consumers.
REFERENCES (35)
1.
Alonso-Blanco C., Belén M.-V. (2014) Genetic architecture of naturally occurring quantitative traits in plants: an updated synthesis. Curr. Opin. Plant Biol. 18: 37-43.
 
2.
Baligar V.C., Fageria N.K. (2015) Nutrient use efficiency in plants: an overview. [in:] Nutrient use efficiency: from basics to advances. Ed. Rakshit A., Singh B.H., Sen A. New Delhi, India. Springer: 1-14. doi: 10.1007/978–81 –322–2169–2_1.
 
3.
Barton K.A., Whiteley H.R., Yang N.S. (1987) Bacillus-thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85(4): 1103-1109. doi: 10.1104/pp.85. 4.1103.
 
4.
Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23(19): 2633-2635. doi: 10.1093/bioinfor matics/btm308.
 
5.
Cooper M., Gho C., Leafgren R., Tang T., Messina C. (2014) Breeding drought-tolerant maize hybrids for the US cornbelt: discovery to product. J. Exp. Bot. 65(21): 6191-6204. doi: 10.1093/jxb/eru064.
 
6.
Duvick D.N. (1984) Genetic contributions to yield gains of U.S. hybrid maize, 1930 to 1980. [in:] Genetic contributions to yield gains of five major crop plants, 15-47. CSSA Special Publication SV – 7. Madison, WI: Crop Science Society of America and American Society of Agronomy. doi:10.2135/cssaspecpub7.c2.
 
7.
Feng C., Yuan J., Wang R., Liu Y., Birchler J.A., Han F. (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J. Genet. Gen. 43(1): 37-43. doi: http://dx.doi.org/10.1016/j.jg....
 
8.
Gonsalves D. (2014) Hawaii’s transgenic papaya story 1978- 2012: a personal account. [in:] Genetics and Genomics of Papaya. Ed. Ming R. and Moore P.H., 115-142. New York, NY: Springer New York. doi: 10.1007/978–1–4614–8087–7_7.
 
9.
Gruissem W. (2015) Genetically modified crops: the truth unveiled. Agricult. Food Secur. 4(1): 1-2. doi: 10.1186/ s40066–015–0022–8.
 
10.
Hayes B.J., Bowman P.J., Chamberlain A.J., Goddard M.E. (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92(2): 433-443. doi: http://dx.doi.org/10.3168/jds.....
 
11.
Heffner E.L., Sorrells M.E., Jannink J.-L. (2009) Genomic selection for crop improvement. Crop Sci. 49: 1-12. doi: 10.2135/cropsci2008.08.0512.
 
12.
Jankowicz-Cieslak J., Till B.J. (2015) Forward and reverse genetics in crop breeding. [in:] Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Ed. Al-Khayri M., Jameel J.M.S., Johnson V.D. Springer International Publishing. Cham: 215-240. doi: 10.1007/978–3–319–22521–0_8.
 
13.
Karaca M. (2013) Isozymes as biochemical markers in plant genetics. Inter. J. AgriSci. 3(11): 851-861.
 
14.
Korte A., Farlow A. (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Meth. 9(1): 1-9. doi: 10.1186/1746–4811–9–29.
 
15.
Lübberstedt T. (2013) Diagnostics in plant breeding. [in:] Diagnostics in plant breeding. Ed. Thomas Lübberstedt T., Rajeev Varshney K., Springer Netherlands. Dordrecht: 3-9. doi: 10.1007/978–94–007–5687–8_1.
 
16.
Matzke A.J., Chilton M.D. (1981) Site-specific insertion of genes into T-DNA of the agrobacterium tumor-inducing plasmid: an approach to genetic engineering of higher plant cells. J. Mol. Appl. Genet. 1(1): 39-49. http://europe pmc.org/abstract/MED/6955419.
 
17.
McCarty D.R., Meeley R.B. (2009) Transposon resources for forward and reverse genetics in maize. [in:] Handbook of maize: genetics and genomics. Ed. Bennetzen J.L., Hake S. Springer New York. New York, NY: 561-584. doi: 10.1007/978–0–387–77863–1_28.
 
18.
McMullen M.D., Kresovich S., Villeda H.S., Bradbury P., Li H., Sun Q., Flint-Garcia S. et al. (2009) Genetic properties of the maize nested association mapping population. Science 325(5941): 737-740. doi: 10.1126/science.1174320.
 
19.
Mickelbart M.V., Hasegawa P.M., Bailey-Serres J. (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Rev. Genet. 16(4): 237-251.
 
20.
Moshelion M., Altman A. (2016) Current challenges and future perspectives of plant and agricultural biotechnology. Trends Biotech. 33(6): 337-342. doi: 10.1016/j.tibtech. 2015.03.001.
 
21.
Napier J.A., Haslam R.P., Beaudoin F., Cahoon E.B. (2014) Understanding and manipulating plant lipid composition: metabolic engineering leads the way. Curr. Opin. Plant Biol. 19: 68-75. doi: http://dx.doi.org/10.1016/j.pb.... 04.001.
 
22.
Phillips R.L, Vasil I.K. (2013) DNA-Based markers in plants. Vol. 6. Springer Science & Business Media.
 
23.
Pilbeam D.J. (2015) Breeding crops for improved mineral nutrition under climate change conditions. J. Exp. Bot. 66(12): 3511-3521. doi: 10.1093/jxb/eru539.
 
24.
Potrykus I. (2012) “Golden rice”, a GMO-product for public good, and the consequences of GE-regulation. J. Plant Biochem. Biotech. 21(1): 68-75. doi: 10.1007/s13562 –012–0130–5.
 
25.
Qaim M. (2016) Adoption and impacts of GM crops. [in:] Genetically modified crops and agricultural development. Palgrave Macmillan US. New York: 57-84. doi: 10.1057/ 9781137405722_4.
 
26.
Rafalski J.A. (2010) Association genetics in crop improvement. Curr. Opin. Plant Biol. 13(2): 174-180. doi: 10.1016/j.pbi.2009.12.004.
 
27.
Sammons* B., Whitsel J., Stork L.G., Reeves W., Horak M. (2014) Characterization of drought-tolerant maize MON 87460 for use in environmental risk assessment. Crop Sci. 54: 719-729. doi: 10.2135/cropsci2013.07.0452.
 
28.
Shah D.M., Horsch R.B., Klee H.J., Kishore G.M., Winter J.A., Tumer N.E., Hironaka C.M. et al. (1986) Engineering herbicide tolerance in transgenic plants. Science 233(4762): 478-481. http://www.jstor.org/stable/16....
 
29.
Strigens A., Schipprack W., Reif J.C., Melchinger A.E. (2013) Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PLoS ONE 8(2): e57234. http://dx.doi.org/10.1371%252F journal.pone.0057234.
 
30.
Tyagi S., Mir R.R., Kaur H., Chhuneja P., Ramesh B., Balyan H.S., Gupta P.K. (2014) Marker-assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (Triticum aestivum L.). Mol. Breed. 34(1): 167-175. doi: 10.1007/s11032–014–0027–1.
 
31.
Vigani M., Olper A. (2015) Patterns and determinants of GMO regulations: an overview of recent evidence. AgBioForum 18(1): art. 6.
 
32.
Visscher P.M., Brown M.A., McCarthy M.I., Yang J. (2012) Five years of GWAS discovery. Amer. J. Human Genet. 90(1): 7-24. doi: http://dx.doi.org/10.1016/j.aj.... 11.029.
 
33.
Wallace J.G., Bradbury P.J., Zhang N., Gibon Y., Stitt M., Buckler E.S. (2014) Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet. 10(12): e1004845. http://dx.doi.org/ 10.1371%252Fjournal.pgen.1004845.
 
34.
Weigel D., Ahn J.H., Blázquez M.A., Borevitz J.O., Christensen S.K., Fankhauser C., Ferrándiz C. et al. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122(4): 1003-1014. doi: 10.1104/pp.122.4.1003.
 
35.
Yang Q.-Q., Zhang C.-Q., Chan M.-L., Zhao D.-S., Chen J.-Z., Wang Q., Li Q.-F. et al. (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J. Exp. Bot. 67(14): 4285-4296. doi:10.1093/jxb/erw209.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top