OPINION
European Union needs agro-bioeconomy
 
More details
Hide details
1
Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
 
2
European Federation of Biotechnology, Brussels, Belgium
 
3
Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
 
4
GMO Controlling Laboratory, Plant Breeding and Acclimatization Institute – National Research Institute, Błonie, Radzików, Poland
 
5
Institute of Law Studies, Polish Academy of Sciences, Warszawa, Poland
 
 
Submission date: 2016-11-10
 
 
Final revision date: 2017-01-18
 
 
Acceptance date: 2017-01-19
 
 
Publication date: 2017-05-25
 
 
BioTechnologia 2017;98(1):73-78
 
KEYWORDS
TOPICS
ABSTRACT
Bioeconomy, biotechnology and genetically-modified organisms in particular have been the subject of discussion for a long time. Biotechnology is applied in a variety of economic areas which include biopharmaceuticals, biobased products and agriculture. During the last 20 years, innovative biotechnological techniques for plant genome improvement have been developed. Many factors worldwide have led to the status quo : different legislations around the world, the lack of public acceptance in the EU and high expectations for new strategies for sustainability and food security. Therefore, a clear regulatory status for new techniques is crucial for research and development, as well as for their practical implementation. This should be based on solid science which plays a critical role in developing the bioeconomy.
REFERENCES (23)
1.
Ayub R., Guis M., Ben Amor M., Gillot L., Roustan J.P., Latché A., Bouzayen M., Pech J.C. (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat. Biotechnol. 14: 862-866.
 
2.
Association for Molecular Pathology v. Myriad Genetics, No. 12-398, 569 U.S. June 13, 2013.
 
3.
Bostyn S. (2013) Patentability of plants: at the crossroads between monopolizing nature and protecting technological innovation? J. World Intel. Property 16(3-4): 105-149.
 
4.
Boualem A., Troadec C., Camps C., Lemhemdi A., Morin H., Sari M.A., Fraenkel-Zagouri R., Kovalski I., Dogimont C., Perl-Treves R., Bendahmane A. (2015) A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science. 350: 688-691.
 
5.
Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., Sherman A., Arazi T., Gal-On A.. (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17: 1140-1153.
 
6.
Conley J.M., Cook-Deegan R., Lazaro-Munoz G. (2014) Myriad after Myriad: the proprietary data dilemma. North Carolina J. Law Technol. 15(4): 597-637.
 
7.
CRISPR-muterad backtrav (2015) http://www.umu.se/digital Assets/171/171718_beslut-umea.pdf.
 
8.
EFSA (2012) Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis. EFSA J. 10(2): 2561 (http://www.efsa.europa.eu/ en/efsajournal/pub/2561).
 
9.
Garcia-Mas J., Benjak A., Sanseverino W., Bourgeois M., Mir G., González V.M., Hénaff E., Câmara F., Cozzuto L., Lowy E., Alioto T., Capella-Guitérrez S., Blanca J, Cañizares J., Ziarsolo P., Gonzalez-Ibeas D., Rodríguez-Moreno L., Droege M., Du L., Alvarez-Tejado M., Lorente-Galdós B., Melé M., Yang L., Weng Y., Navarro A., Marques- Bonet T., Aranda M.A., Nuez F., Picó B., Gabaldón T. et al. (2012): The genome of melon (Cucumis melo L.). PNAS 109: 11872-11877.
 
10.
Guo S., Zhang J., Sun H., Salse J., Lucas W.J., Zhang H., Zheng Y., Mao L., Ren Y., Wang Z. et al. (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genet. 45: 51-58.
 
11.
González V.M., Aventín N., Centeno E., PuigdomPnech P. (2014) Interspecific and intraspecific gene variability in a 1-Mb region containing the highest density of NBS-LRR genes found in the melon genome. BMC Genom. 15: 1131.
 
12.
Haverkort A.J., Struik P.C., Visser R.G.F., Jacobsen E. (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res. 52: 249-264.
 
13.
Holme I.B., Wendt T., Holm P.B. (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J. 11(4): 395-407.
 
14.
Huang S., Li, R., Zhang Z., Li L, Gu X., Fan W., Lucas W.J., Wang X., Xie B., Ni P., Ren Y. et al. (2009) The genome of the cucumber, Cucumis sativus L. Nature Genet. 41: 1275-1281.
 
15.
Joshi S.G., Soriano J.M., Kortstee A., Schaart J.G. (2009). Development of cisgenic apples with durable resistance to apple scab. Acta Horticult. 839: 403-406.
 
16.
Laaninen T. (2016) New plant-breeding techniques. Applicability of GM rules, EU 2016.
 
17.
Lusser M., Parisi C., Plan D., Rodriguez-Cerezo E. (2011) New plant breeding techniques. State-of-the-art and prospects for commercial development. Rep. EUR 24760 EN. European Commission – Joint Research Centre, Institute for Prospective Technological Studies.
 
18.
Prifti V. (2015) The Breeder’s Exception to Patent Rights Analysis of Compliance with Article 30 of the TRIPS Agreement. Springer 2015: 176.
 
19.
Restrictions of geographical scope of GMO applications/authorisations: Member States demands and outcomes (2016a) http://ec.europa.eu/food/plant... ation/geographical_scope_en.htm.
 
20.
EU Register of authorised GMOs (2016b) http://ec.europa.eu/food/dyna/....
 
21.
Martin A., Troadec C., Boualem A., Rajab M., Fernandez R., Morin H., Pitrat M., Dogimont C., Bendahmane A. (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461: 1135-1138.
 
22.
Sageret A. (1826) Considérations sur la production des Hybrides, des variantes et de Variétés en géneral et sur celles de la famille des Cucubitacées en particulier. Annal. Sci. Naturel. 8: 294-314.
 
23.
Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J-L. (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32(9): 947-951.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top