RESEARCH PAPER
Enhanced mass regeneration of pro-vitamin A cassava (Manihot esculenta Crantz) varieties through multiple shoot induction from enlarged axillary buds
 
More details
Hide details
1
Department of Crop Production and Protection, Faculty of Agriculture, Obafemi Awolowo University, Ile-Ife, Nigeria
 
 
Submission date: 2017-06-12
 
 
Final revision date: 2017-08-24
 
 
Acceptance date: 2017-09-25
 
 
Publication date: 2018-03-16
 
 
BioTechnologia 2017;98(4):305-314
 
KEYWORDS
TOPICS
ABSTRACT
An efficient mass propagation system for a rapid delivery of pro-vitamin A cassava varieties to farmers is essential for acquiring food sufficiency and reducing vitamin A deficiency in Africa. The study investigated multiple shoot inductions from axillary buds of three pro-vitamin A enriched cassava varieties using a combination of 10 mg/l 6-benzylaminopurine (BAP) and 0.1-0.5 mg/l naphthalene acetic acid (NAA). Growth, photosynthetic pigment content and molecular stability of the regenerated plants with random amplified polymorphic DNA (RAPD) markers are also assessed. Shootbud formation in TMS 30572 variety was found to be 8.9% higher than in the three pro-vitamin A varieties. But, the number of regenerated shoots was higher by 7.3% in pro-vitamin A varieties than in TMS 30572. The formation of roots was outstanding in UMUCASS 38. Root carotene contents of regenerated and mother plants were not different. The highest number of shootbuds per explant and frequency of regenerated shoots were obtained through a medium containing 10 mg/l BAP and 0.3 mg/l NAA. The RAPD analysis of regenerated plants showed a uniform profile of 1628 bands among the regenerants and mother plants. The study concluded that a combination of 10 mg/l BAP and 0.3 mg/l NAA enhances a multiple shoot induction with no genetic infidelity of regenerated plants.
REFERENCES (33)
1.
Abdalla N.A., Ragab M.E., El-Deen S., El-Miniawy M., Taha H.S. (2013) Callus induction, regeneration and molecular characterization of cassava (Manihot esculenta Crantz). J. Appl. Sci. Res. 9: 3781-3790.
 
2.
Acedo V.Z. (2006) Improvement of in vitro techniques for rapid meristem development and mass propagation of Philippine cassava (Manihot esculenta Crantz). J. Food, Agri. Environ. 4: 220-224.
 
3.
Agbaje G.O., Grace O.T., Chioma G.O., Ajomale K.O. (2007) Evaluation of yellow-rooted cassava varieties for differences in ß-carotene and gross energy. J. Appl. Sci. Res. 3: 946-948.
 
4.
Aniedu C., Omodamiro R.M. (2012) Use of newly bred $-carotene cassava in production of value – added products: implication for food security in Nigeria. Global J. Sci. Front. Res. Agric. Vet. Sci. 12: 1-10.
 
5.
Bull S.E., Ndunguru J., Gruissem W., Beeching J.R, Vanderschuren H. (2011) Cassava: constraints to production and the transfer of biotechnology to African laboratories. Plant Cell Rep. 30: 677-679.
 
6.
Demeke Y., Tefera W., Dechassa N., Abebie N. (2014) Effects of plant growth regulators on in vitro cultured nodal explants of cassava (Manihotesculenta Crantz) clones. Afri. J. Biotech. 13: 2830-2839.
 
7.
Dellaporta S.L., Wood J., Hicks J.B. (1983) A plant DNA mini preparation version II. Plant biotechnology. Mol. Biol. Rep. 1: 19-21.
 
8.
Dixit S., Mandal B.B., Ahuja S., Srivastava P.S. (2003) Genetic stability assessment of plants regenerated from cryopreserved embryogenic tissues of Dioscoreabulbifera L. using RAPD, biochemical and morphological analysis. Cryo Lett. 24: 77-84.
 
9.
El-Sharkawy M.A. (2004) Cassava biology and physiology. Plant Mol. Biol. 56: 481-501.
 
10.
Hankoua B.B., Ng S.Y.C, Fawole I., Pouti-Kaerlas J., Pillay M., Dixon A.G.O. (2005) Regeneration of a wide range of African cassava genotypes via shoot organogenesis from cotyledons of maturing somatic embryos and conformity of field-established regenerants. Plant Cell Tiss. Org. Cult. 82: 221-231.
 
11.
Kondamudi R., Murthy S.R., Pullaiah T. (2009) EUPHORBIACEAE – a critical review on plant tissue culture. Trop. Subtrop. Agroecosys. 10: 313-335.
 
12.
Konan N.K., Schöpke C., Cárcamo R., Beachy R.N., Fauquet C. (1997) An enhanced mass propagation system for cassava (Manihotesculenta Crantz) based on nodal explants and axillary-bud derived meristems. Plant Cell Rep. 16: 444-449.
 
13.
Li H.Q., Guo J.Y., Huang Y.W., Liang C.Y., Liu H.X., Potrykus I., Puonti-Kaerlas J. (1998) Regeneration of cassava plants via shoot organogenesis. Plant Cell Rep. 17: 410-414.
 
14.
Lichtenthaler H.K., Wellburn A.R. (1985) Determination of total carotenoids and chlorophylls A and B of leaf in different solvents. Biol. Soc. Trans. 11: 591-592.
 
15.
Mapayi E.F., Ojo D.K., Oduwaye O.A., Porbeni J.B.O. (2013) Optimization of in-vitro propagation of cassava (Manihot esculenta Crantz) Genotypes. J. Agric. Sci. 5: 261-269.
 
16.
Martins M., Sarmento D., Oliveira M.M. (2004) Genetic stabilityof micropropagated almond plantlets as assessed by RAPD and ISSR markers. Plant Cell Rep. 23: 492-496.
 
17.
Mussio I., Chaput M.H., Serraf I., Ducreux G., Sihachakr D. (1998) Adventitious shoot regeneration from leaf explants of an African clone of cassava (Manihot esculenta Crantz) and analysis of the conformity of regenerated plant. Plant Cell Tiss. Organ Cult. 53: 205-211.
 
18.
Mohanty S., Panda M.K., Subudhi E., Acharya L. (2008) Genetic stability of micropropagated ginger derived from axillary bud through cytophotometric and RAPD analysis. Z. Naturforsch 63: 747-754.
 
19.
Murashige T., Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Planta. 15: 473-497.
 
20.
Maziya-Dixon B.B., Akinyele I.O., Sanusi R.A., Oguntona T.E.,Nokoe S.K.,Harris E.W. (2006) Vitamin A deficiency is prevalent in children less than 5 y of age in Nigeria. J. Nutri. 136: 2255-2261.
 
21.
Nadha H.K., Kumar R., Sharma R.K., Anand M., Sood A.(2011) Evaluation of clonal fidelity of in vitro raised plants of Guadua angustifolia Kunth using DNA-based markers. J. Med. Plants Res.
 
22.
Nassar N., Ortiz R. (2010) Breeding cassava to feed the poor.Sci. Amer. 302: 78-84.
 
23.
Opabode J.T., Ajibola O.V., Akinyemiju O.A. (2015) Shoot inductionfrom axillary bud of $-carotene enriched Manihot esculenta and molecular stability of regenerants. Agric. Tropica Subtrop. 48(3-4): 53-58.
 
24.
Opabode J.T., Ajibola O.V., Oyelakin O.O., Akinyemiju O.A.(2015) Somatic embryogenesis and genetic uniformity of regenerated cassava plants from low-temperature preserved secondary somatic cotyledons. BioTechnologia 96(3): 246-258.
 
25.
Oparinde A., Banerji A., Birol E., Elona P. (2014) Informationand consumer willingness to pay for biofortified Yellow cassava: evidence from experimental auctions in Nigeria. HarvestPlus Working Paper No. 13: 26.
 
26.
Puonti-Kaerlas J. (1998) Cassava biotechnology. Biotech.Genetic Eng. Rev. 15: 329-336.
 
27.
Rasool R., Kamili A.N., Ganai B.A., Akbar S. (2009) Effect ofBAP and NAA on shoot regeneration in Prunella vulgaris. J. Natural Sci. Math. 3: 22-26.
 
28.
Roca W.M. (1979) Meristem culture in cassava – principlesand procedures. Genetic Resources Unit, CIAT, Cali, Colombia.
 
29.
Rostami H., Giri A., Nejad A.S.M., Moslem A. (2013) Optimizationof multiple shoot induction and plant regeneration in Indian barley (Hordeum vulgare) cultivars using mature embryos. Saudi J. Biol. Sci. 20: 251-256.
 
30.
Sukmadjaja D., Widhiastuti H. (2011) Effects of plant growthregulators on shoot multiplication and root induction of cassava varieties culture. Biotropia 18: 50-60.
 
31.
Ukenye E., Ukpabi U.J. Egesi C., Njoku S. (2013) Physicochemical,nutritional and processing properties of promising newly bred white and yellow fleshed cassava genotypes in Nigeria. Pakistan J. Nutri. 12: 302-305.
 
32.
Villaluz Z.A. (2006) Improvement of in vitro techniques forrapid meristem development and mass propagation of Philippine Cassava (Manihot esculenta Crantz). J. Food, Agri. Environ. 4: 220-224.
 
33.
Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A., TingeyS.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acid Res. 18: 6531-6535.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top