SHORT COMMUNICATION
Identification of miRNAs and their potential targets
in halophyte plant Thellungiella halophila
More details
Hide details
Publication date: 2014-10-23
BioTechnologia 2013;94(3):285-290
KEYWORDS
ABSTRACT
MicroRNAs (miRNAs) are a class of non-coding RNAs with important role in gene regulation in various organisms.
These RNAs regulate gene expression at the post-transcriptional level. To date, several hundred plant miRNAs
have been deposited in the miRBase database. Many of them are conserved during the evolution of terrestrial
plants, suggesting that the well-conserved miRNAs may also retain homologous target interactions. So far, there
has been no experimental or computational identification of miRNAs and their target genes in Thellungiella halophila.
Here, using a computational homology based search approach and according to a series of filtering criteria,
a total of 8 miRNAs belonging to 4 miRNA families were detected from the Expressed Sequence Tags (EST) databases.
Potential target genes of these predicted miRNAs were subsequently assessed. Our findings showed that
among the target genes, most of them encode transcription factors and enzymes that participate in regulation
of development, growth and other physiological processes.
REFERENCES (27)
1.
Adai A. et al. (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res. 15: 78-91.
2.
Altschul S.F., Madden T.L., Schäffer A.A., J. Zhang, Zhang Z., Miller W., Lipman D.J. (1997) Gapped BLAST and PSIBLAST: A New Generation of Protein Database Search Programs, Nucl. Acids Res. 25: 3389-3402.
3.
Axtell M.J., Bartel D.P. (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17: 1658-1673.
4.
Bressan R.A., Zhang C., Zhang H., Hasegawa P.M., Bohnert H.J., Zhu J.K. (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol. 127: 1354-1360.
5.
Carrington J.C., Ambros V. (2003) Role of microRNAs in plant and animal development. Science 301: 336-338.
6.
Chen X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303: 2022-2025.
7.
Das A., Mondal T.K. (2010) Computational Identification of Conserved microRNAs and Their Targets in Tea(Camellia sinensis). Amer. J. Plant Sci. 1: 77-86.
8.
Griffiths-Jones S. (2006) miRBase: the microRNA sequence database. Meth. Mol. Biol. 342: 129-138.
9.
Guo S.H., Xie Q., Fei F.J., Chua H.N. (2005) MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development. Plant Cell 17: 1376-1386.
10.
Jin W., Li N., Zhang B., Wu F., Li W., Guo A., Deng Z. (2008) Identification and Verification of microRNA in Wheat (Triticum aestivum). J. Plant Res. 121: 351-355.
11.
Jones-Rhoades M.W., Bartel P.D. (2004) Computtional Identification of Plant microRNAs and Their Targets, Including a Stress-Induced miRNA. Mol. Cell 14: 787-799.
12.
Kurihara Y., Watanabe Y., (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. USA 101: 12753-12758.
13.
Larkin M., Blackshields G., Brown N.P. et al. (2007) Clustal W and Clustal X. Bioinformatics 23(21): 2947-2948.
14.
Lee R.C., Einbaum R.L., Ambros V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854.
15.
Li Y., Li W., Jin Y.X. (2005) Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim. Biophys. Sin. (Shanghai) 37: 75-87.
16.
Lin S.L., Chang D., Ying S.Y. (2005) Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene 356: 32-38.
17.
Lu Y., Gan Q., Chi X., Qin S. (2008) Roles of microRNA in Plant Defense and Virus Offense Interaction. Plan Cell Rep. 27: 1571-1579.
18.
Mathews D.H., Sabina J., Zuker M., Turner D.H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288: 911-940.
19.
Mead E.A., Tu Z. (2008) Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi. BMC Genomics 23: 244-253.
20.
Nasaruddin M.N., Harikrishna K., Othman Y.R., Hoon S.L., Harikrishna A.J. (2007) Computational Prediction of microRNAs from Oil Palm (Elaeis guineensis Jacq.) Expressed Sequence Tags. Asian Pacific J. Mol. Biol. Biotechnol. 15: 107-111.
21.
Park M.Y., Wu G., Gonzalez-Sulser A., Vaucheret H., Poethig R.S. (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 102: 3691- 3696.
22.
Ritchie W. et al. (2008) Mireval: a web tool for simple microRNA prediction in genome sequences. Bioinformatics 24: 1394-1396.
23.
Tamura K., Dudley J., Nei M., Kumar S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
24.
Yin Z., Li C., Han X., Shen F. (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 41: 460-466.
25.
Zhang B., Pan X., Anderson A.T. (2006) Identification of 188 Conserved Maize microRNAs and Their Targets. FEBS Lett. 580: 153753-153762.
26.
Zhang B., Pan X., Cobb G.P., Anderson T. (2006) Plant microRNA: A Small Regulatory Molecule with Big Impact. Develop. Biol. 289: 3-16.
27.
Zujun Yin, Chunhe Li, Xiulan Han, Fafu Shen (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414: 60-66.
Zuker M. (2003) Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucl. Acids Res. 31: 3406- 3415.