RESEARCH PAPER
Identification of novel genes potentially involved in rice (Oryza sativa L.) drought tolerance
 
 
More details
Hide details
1
Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University
 
 
Submission date: 2016-11-25
 
 
Final revision date: 2017-06-08
 
 
Acceptance date: 2017-07-11
 
 
Publication date: 2018-01-02
 
 
BioTechnologia 2017;98(3):195-208
 
KEYWORDS
TOPICS
ABSTRACT
Drought is a major constraint affecting rice production and causing yield reduction of up to 60% in the major growing areas of Asia. Developing drought-tolerant cultivars in rice is an appropriate strategy to provide food security and hinder the harmful effects of drought. Therefore, particular attention must be directed toward identifying drought-responsive genes. In the present study, based on the microarray analysis results of two rice genotypes with contrasting response to drought stress, 308 probe sets are uniquely upregulated with equal to or greater than 3 symmetric fold changes in drought-tolerant genotype upon exposure to drought stress. As the next step, mapping of the corresponding genes of these probe sets via the web-based tool “QlicRice” is expected to reveal the genes within the drought stress-associated QTLs (quantitative trait loci). To determine the number of probe sets annotated to the transcription factors in various families, the plant transcription factor database (PlnTFDB) is relatively utilized. Finally, the biclustering analysis using Genevestigator is at hand to unveil the biclusters along with the embedded probe sets annotated to 3 transcription factors in different drought stress studies. The survey is also aimed at determining the possible relationships between up- and co-regulated genes and the transcription factors in the obtained biclusters through plant promoter analysis navigator (PlantPAN). To substantiate how the exploration of transcriptomic changes of the genotypes with contrasting drought tolerance could uncover a number of genes associated with rice drought stress is the ultimate goal of the present study.
REFERENCES (75)
1.
Alisoltani A., Fallahi H., Ebrahimi M., Ebrahimi M., Ebrahimie E. (2014) Prediction of potential cancer-risk regions based on transcriptome data: towards a comprehensive view. PLoS One 9: e96320.
 
2.
An G., Jeong D.H., Jung K.H., Lee S. (2005) Reverse genetic approaches for functional genomics of rice. Plant Mol. Biol. 59(1): 111-123.
 
3.
Andersen S.U., Algreen-Petersen R.G., Hoedl M., Jurkiewicz A., Cvitanich C., Braunschweig U., Schauser L., Oh S.A., Twell D., Jensen E.O. (2007) The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. J. Exp. Bot. 58: 3657-3670.
 
4.
Bolle C. (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218: 683-692.
 
5.
Chauhan H., Khurana N., Agarwal P., Khurana P. (2011) Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol. Genet Genomics 286(2): 171-187.
 
6.
Chen L., Xiong G., Cui X., Yan M., Xu T., Qian Q. et al. (2013) OsGRAS19 may be a novel component involved in the brassinosteroid signaling pathway in rice. Mol. Plant 6(3): 988-991.
 
7.
Cotsaftis O., Plett D., Johnson A.A.T, Walia H., Wilson C., Ismail A.M., Close T.J., Tester M., Baumann U. (2011) Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol. Plant 4: 25-41.
 
8.
Dai X.Y., Xu Y.Y., Ma Q.B., Xu W.Y., Wang T., Xue Y.B., et al. (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 143(4): 1739-1751.
 
9.
Delaney K.J., Xu R., Zhang J., Li Q.Q., Yun K.Y., Falcone D.L., Hunt A.G. (2006) Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit. Plant Physiol. 140: 1507-1521.
 
10.
Deng H., Liu H., Li X., Xiao J., Wang S. (2012) A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol. 158: 876-889.
 
11.
Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A. (2010) Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct. Integr. Genomics 10: 339- 347.
 
12.
Dhaubhadel S., Gijzen M., Moy P., Farhangkhoee M. (2007) Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiol. 143: 326-338.
 
13.
Fang Y., You J., Xie K., Xie W., Xiong L. (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol. Genet. Genomics 280(6): 547-563.
 
14.
Farooq M., Wahid A., Lee D., Ito O., Siddique K. (2009) Advances in drought resistance of rice. CRC Crit. Rev. Plant Sci. 28(4): 199-217.
 
15.
Gao, F., Xiong A., Peng R., Jin X., Xu J., Zhu B., Chen J., Yao Q. (2010) OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tissue Organ Cult. 100(3): 255-262.
 
16.
Gracz J. (2016) Alternative splicing in plant stress response. BioTechnologia. 97(1): 9-17.
 
17.
Guo A., He K., Liu D., Bai S., Gu X., Wei L., Luo J. (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21: 2568-2569.
 
18.
Guo L., Wang Z.Y., Lin H. et al. (2006) Expression and functional analysis of the rice plasma membrane intrinsic protein gene family. Cell Res. 16: 277-286.
 
19.
Guo M., Liu JH., Ma X., Luo D.X., Gong Z.H., Lu M.H. (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 7: 114.
 
20.
Hadiarto T., Tran L.P. (2011) Progress studies of droughtresponsive genes in rice. Plant Cell Rep. 30: 297-310.
 
21.
Halimaa P., Blande D., Aarts M.G., Tuomainen M., Tervahauta A., Kärenlampi S. (2014) Comparative transcriptome analysis of the metal hyper accumulator Noccaea caerulescens. Front. Plant Sci. 5: 213.
 
22.
Hauser B.A., He J.Q., Park S.O., Gasser C.S. (2000) TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development 127: 2219-2226.
 
23.
Hoagland D.R., Arnon D.I. (1950) The water-culture method for growing plants without soil. Univ. California Agr. Expt. Sta. Circ. 347.
 
24.
Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q., Xiong M. (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 103: 12987- 12992.
 
25.
Hu W., Hu G., Han B. (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci. 176: 583-590.
 
26.
Huan Q., Mao Z., Zhang J., Xu Y., Chong K. (2013) Transcriptome- wide analysis of vernalization reveals conserved and species-specific mechanisms in Brachypodium. J. Integr. Plant Biol. 55: 696-709.
 
27.
Ikeda A., Ueguchi-Tanaka M., Sonoda Y., Kitano H., Koshioka M., Futsuhara Y. et al. (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13(5): 999-1010.
 
28.
Islam M.A., Du H., Ning J., Ye H., Xiong L. (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol. Biol. 70: 443-456.
 
29.
Jeong J.S., Kim Y.S., Baek K.H., Jung H., Ha S.H., Do Choi Y., Kim M., Reuzeau C., Kim J.K. (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153(1): 185-197.
 
30.
Jin X.F., Xiong A.S., Peng R.H., Liu J.G., Gao F., Chen J.M., Yao Q.H. (2009) OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Rep. 43: 34-39.
 
31.
Kamiya N., Itoh J., Morikami A., Nagato Y., Matsuoka M. (2003) The SCARECROW gene's role in asymmetric cell divisions in rice plants. Plant J. 36(1): 45-54.
 
32.
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R. (2009) Circos: an information aesthetic for comparative genomics. Genome Res. 19: 1639-1645.
 
33.
Kudo M., Kidokoro S., Yoshida T., Mizoi J., Todaka D., Fernie A.R., Shinozaki K. Yamaguchi-Shinozaki K. (2016) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol. J. 15(4): 458-471.
 
34.
Lee S., Woo Y.M., Ryu S.I., Shin Y.D., Kim W.T., Park K.Y., Lee I.J., An G. (2008) Further characterization of a rice AGL12 group MADS-box gene, Os-MADS26. Plant Physiol. 147: 156-168.
 
35.
Li J., Jia D., Chen X. (2001) HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein. Plant Cell 13: 2269-2281.
 
36.
Li X.Y., Qian Q., Fu Z.M., Wang Y.H., Xiong G.S., Zeng D.L., et al. (2003) Control of tillering in rice. Nature 422(6932): 618-621.
 
37.
Liang W., Cui W., Ma X., Wang G., Huang Z. (2014) Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice. Biochem. Biophys. Res. Commun. 450: 794-801.
 
38.
Liu P., Xu Z.S., Pan-Pan L., Hu D., Chen M., Li L.C., Ma Y.Z. (2013) A wheat PI4K gene whose product possesses threonine autophosphorylation activity confers tolerance to drought and salt in Arabidopsis. J. Exp. Bot. 64: 2915-2927.
 
39.
Luhua S., Ciftci-Yilmaz S., Harper J., Cushman J., Mittler R. (2008) Enhanced tolerance to oxidative stress in transgenic Arabidopsis plants expressing proteins of unknown function. Plant Physiol. 148: 280-292.
 
40.
Luo L.J. (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J. Exp. Bot. 61(13): 3509- 3517.
 
41.
Miller G., Mittler R. (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Bot. (Lond). 98(2): 279-288.
 
42.
Muhamman J., Waqas I., Asia B. (2010) Constitutive expression of OsC3H33, OsC3H50 and OsC3H37 genes in rice under salt stress. Pak. J. Bot. 42: 4003-4009.
 
43.
Nakashima K., Tran L.S., Van Nguyen D. et al. (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51: 617-630.
 
44.
Nijhawan A., Jain M., Tyagi A.K., Khurana J.P. (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146: 333-350.
 
45.
Nuruzzaman M., Manimekalai R., Sharoni A.M., Satoh K., Kondoh H., Ooka H., Kikuchi S. (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1): 30-44.
 
46.
Ohnishi T., Sugahara S., Yamada T., Kikuchi K., Yoshiba Y., Hirano H.Y., Tsutsumi N. (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet. Syst. 80(2): 135-139.
 
47.
Pandey S. (2007) Economic costs of drought and rice farmers’ coping mechanisms. Int. Rice Res. Notes 32(1): 5-11.
 
48.
Pandit A., Rai V., Bal S., Sinha S., Kumar V., Chauhan M., Gautam R.K., Singh R., Sharma P.C., Singh A.K., Gaikwad K., Sharma T.R., Mohapatra T., Singh N.K. (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol. Genet. Genomics 284: 121-136.
 
49.
Pawlowski K. (2008) Uncharacterized/hypothetical proteins in biomedical ‘omics’ experiments: Is novelty being swept under the carpet? Brief. Funct. Genomic. Proteomic. 7(4): 283-290.
 
50.
Pérez-Rodríguez P., Riańo-Pachón D.M., Corrça L.G.G., Rensing S.A., Kersten B., Mueller-Roeber B. (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res. 38: D822-D827.
 
51.
Qin Z.S., McCue L.A., Thompson W., Mayerhofer L., Lawrence C.E., Liu J.S. (2003) Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites. Nat. Biotechnol. 21(4): 435-439.
 
52.
Rabello A.R., Guimarăes C.M., Rangel P.H., da Silva F.R., Seixas D., de Souza E., Brasileiro A.C., Spehar C.R., Ferreira M.E., Mehta A. (2008) Identification of droughtresponsive genes in roots of upland rice (Oryza sativa L). BMC Genomics 9: 485.
 
53.
Rai V., Singh N.K. (2011) Differential expression for salt and drought stress. Gene series 21651 (GSE21651). Public on Dec 31.
 
54.
Ramamoorthy R., Jiang S.Y., Kumar N., Venkatesh P.N., Ramachandran S. (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol. 49(6): 865-879.
 
55.
Redillas M.C., Jeong J.S., Kim Y.S., Jung H., Bang S.W., Choi Y.D., Ha S.H., Reuzeauand C., Kim J.K. (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotech. J. 10(7): 792-805.
 
56.
Roy N.C., Altermann E., Park Z.A., McNabb W.C. (2011) A comparison of analog and Next-Generation transcriptomic tools for mammalian studies. Brief. Funct. Genomics 10: 135-150.
 
57.
Sarris A. (2004) Proceedings of FAO rice conference 2004. FAO, UN.
 
58.
Singh A.K., Kumar R., Pareek A., Sopory S.K., Singla-Pareek S.L. (2012) Overexpression of rice CBS domain containing protein improves salinity, oxidative and heavy metal tolerance in transgenic tobacco. Mol. Biotechnol. 52(3): 205-216.
 
59.
Smita S., Lenka S.K., Katiyar A., Jaiswal P., Preece J., Bansal K.C. (2011) QlicRice: a web interface for abiotic stress responsive QTL and loci interaction channels in rice. Database (Oxford) 2011: bar037.
 
60.
Song X.Y., Zhang Y.Y., Wu F.C., Zhang L. (2016) Genome-wide analysis of the maize (Zea may L.) CPP-like gene family and expression profiling under abiotic stress. Genet. Mol. Res. 15(3) doi: 10.4238/gmr.15038023.
 
61.
Takahashi S., Seki M., Ishida J. et al. (2004) Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-lenght cDNA microarray. Plant Mol. Biol. 56: 29-55.
 
62.
Takasaki H., Maruyama K., Kidokoro S. et al. (2010) The abiotic stress responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol. Genet. Genomics 284: 173-183.
 
63.
Tang W., Ji Q., Huang Y., Jiang Z., Bao M., Wang H., Lin R. (2013) FAR-RED ELONGATED HYPOCOTYL3 and FARRED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol. 163(2): 857-866.
 
64.
Thompson M.J., Lai W.S., Taylor G.A., Blackshear P.J. (1996) Cloning and characterization of two yeast genes encoding members of the CCCH class of zinc finger proteins: zinc finger-mediated impairment of cell growth. Gene 174: 225-233.
 
65.
Tian C., Wan P., Sun S., Li J., Chen M. (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol. 54(4): 519-32.
 
66.
Tong H.N., Jin Y., Liu W.B., Li F., Fang J., Yin Y.H. et al. (2009) DWARF AND LOWTILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J. 58(5): 803-816.
 
67.
Wang X.S., Zhu H.B., Jin G.L., Liu H.L., Wu W.R., Zhu J. (2007) Genome scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci. 172: 414-420.
 
68.
Ward J.A., Ponnala L., Weber C.A. (2012) Strategies for transcriptome analysis in non model plants. Am. J. Bot. 99: 267-276.
 
69.
Wei L.Q., Xu W.Y., Deng Z.Y., Su Z., Xue Y., Wang T. (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11: 338.
 
70.
Xiang Y., Tang N., Du H., Ye H., Xiong L. (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 148: 1938-1952.
 
71.
Xiong H., Li J., Liu P., Duan J., Zhao Y., Guo X., Li Y., Zhang H., Ali J., Li Z. (2014) Overexpression of OsMYB48-1, a Novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE. 9(3): e92913.
 
72.
Xu K., Chen S., Li T., Ma X., Liang X., Ding X., Liu H., Luo L. (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol. 15: 141.
 
73.
Yu H., Wang F., Tu K., Xie L., Li Y.Y., Li Y.X. (2007) Transcript- level annotation of Affymetrix probesets improves the interpretation of gene expression data. BMC Bioinformatics 8: 194.
 
74.
Yu S., Ligang C., Liping Z., Diqiu Y. (2010) Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. J. Biosci. 35: 459- 471.
 
75.
Zimmermann P., Hirsch-Hoffmann M., Hennig L., Gruissem W. (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136: 2621- 2632.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top