RESEARCH PAPER
Immunogenicity of recombinant bacterial antigens expressed
as fusion proteins in transgenic rice seeds
More details
Hide details
1
Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
2
Infectious Diseases Division, ICDDR,B (International Centre for Diarrhoeal Disease Research), Dhaka, Bangladesh
Submission date: 2017-04-23
Final revision date: 2017-07-12
Acceptance date: 2017-08-24
Publication date: 2018-03-16
BioTechnologia 2017;98(4):269-281
KEYWORDS
TOPICS
ABSTRACT
Rice-based vaccines do not require high-cost purification. They are stable at room temperature, can eliminate the risk of attenuated vaccine strains, and are resistant to gastrointestinal degradation. We tested the applicability of an oral delivery system for tuberculosis (TB) and cholera antigens in transgenic rice for induction of immune responses in the mucosal compartment as well as in the systemic circulation. For vaccine development, we selected mycobacterial Ag85B antigen and immunoprotective P4 epitope of TcpA fused to the nontoxic cholera toxin B (CTB) subunit for immunization against TB and cholera, respectively, in independent constructs. The expression levels of CTB, CTB-TcpA, and CTB-Ag85B in transgenic lines containing stably integrated, chimeric genes showed up to 0.64%, 0.34%, and 0.02% of total rice seed protein, respectively. Oral immunization of mice with each of the three seed lines resulted in significantly increased levels of both anti-CTB IgG and IgA responses in the serum and IgA responses in the bronchoalveolar lavage (BAL) fluid. This indicated the capacity for oral immunization to elicit immune responses in the respiratory mucosal compartment. Plant-expressed TcpA could be detected in immunoblot analysis by using TcpA-specific commercial antibody, while there was no recognition of rice-expressed Ag85B by the commercial antibody raised against the latter antigen, where both antibodies were produced against the antigens expressed in the bacterial system. This study focused on identifying antigens resistant to both posttranslational modifications in plants and immunogenic under the proposed delivery system in animals for boosting the mucosal and systemic humoral immune response against enteric as well as respiratory pathogens.
REFERENCES (45)
1.
Alam M.M., Aktar A., Afrin S., Rahman M.A., Aktar S., Uddin T., Al Mahbuba D., Chowdhury F., Khan A.I., Bhuiyan T.R. et al. (2014) Antigen-specific memory B-cell responses to enterotoxigenic Escherichia coli infection in Bangladeshi adults. PLoS Negl. Trop Dis. 8(4): e2822.
2.
Ali M., Lopez A.L., You Y., Kim Y.E., Sah B., Maskery B., Clemens J. (2012) The global burden of cholera. Bull. World Health Organ 90(3): 209-218.
3.
Asaduzzaman M., Ryan E.T., John M., Hang L., Khan A.I., Faruque A.S., Taylor R.K., Calderwood S.B., Qadri F. (2004) The major subunit of the toxin-coregulated pilus TcpA induces mucosal and systemic immunoglobulin A immune responses in patients with cholera caused by Vibrio cholerae O1 and O139. Infect. Immun. 72(8): 4448-4454.
4.
Chauhan J.S., Rao A., Raghava G.P. (2013) In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One 8(6): e67008.
5.
Clemens J., Holmgren J. (2014) When, how, and where can oral cholera vaccines be used to interrupt cholera outbreaks? Curr. Top Microbiol. Immunol. 379: 231-258.
6.
Daniell H., Streatfield S.J., Wycoff K. (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6(5): 219-226.
7.
Francis M.L., Ryan J., Jobling M.G., Holmes R.K., Moss J., Mond J.J. (1992) Cyclic AMP-independent effects of cholera toxin on B cell activation. II. Binding of ganglioside GM1 induces B cell activation. J. Immunol. 148(7): 1999-2005.
8.
Herrington D.A., Hall R.H., Losonsky G., Mekalanos J.J., Taylor R., Levine M.M. (1988) Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168(4): 1487-1492.
9.
Holmgren J., Lycke N., Czerkinsky C. (1993) Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems. Vaccine 11(12): 1179-1184.
10.
Holmgren J., Svennerholm A.M. (2012) Vaccines against mucosal infections. Curr. Opin. Immunol. 24(3): 343-353.
11.
Islam S.T., Tammi R., Singla-Pareek S.L., Seraj Z. (2009) Agrobacterium-mediated transformation and constitutive expression of PgNHX1 from Pennisetum glaucum L. in Oryza sativa L. cv. Binnatoa. Plant Tissu. Cult. Biotech. 19(1): 25-33.
12.
Jefferson R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5(4): 387- 405.
13.
Katsube T., Kurisaka N., Ogawa M., Maruyama N., Ohtsuka R., Utsumi S., Takaiwa F. (1999) Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol. 120(4): 1063-1074.
14.
Kaufmann S.H., Hussey G., Lambert P.H. (2010) New vaccines for tuberculosis. Lancet 375(9731): 2110-2119.
15.
Kiaie S., Abtahi H., Mosayebi G., Alikhani M.Y., Pakzad I. (2014) Recombinant toxin-coregulated pilus A (TcpA) as a candidate subunit cholera vaccine. Iranian J. Microbiol. 6(2): 68-73.
16.
Kunisawa J., Nochi T., Kiyono H. (2008) Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol. 29(11): 505-513.
17.
Li J.F., Li L., Sheen J. (2010) Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology. Plant Meth. 6(1): 1.
18.
Lozes E., Huygen K., Denis O., Montgomery D.L., Yawman A.M., Vandenbussche P., Van Vooren J.-P., Drowart A., Ulmer J.B., Liu M.A. (1997) Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine 15(8): 830-833.
19.
Lu X., Clements J.D., Katz J.M. (2002) Mutant Escherichia coli heat-labile enterotoxin [LT(R192G)] enhances protective humoral and cellular immune responses to orally administered inactivated influenza vaccine. Vaccine 20(7-8): 1019-1029.
20.
Lycke N. (2012) Recent progress in mucosal vaccine development: potential and limitations. Nature Rev. Immunol. 12(8): 592-605.
21.
Macpherson A.J., McCoy K.D., Johansen F.E., Brandtzaeg P. (2008) The immune geography of IgA induction and function. Mucosal Immunol. 1(1): 11-22.
22.
Matsumoto Y., Suzuki S., Nozoye T., Yamakawa T., Takashima Y., Arakawa T., Tsuji N., Takaiwa F., Hayashi Y. (2009) Oral immunogenicity and protective efficacy in mice of transgenic rice plants producing a vaccine candidate antigen (As16) of Ascaris suum fused with cholera toxin B subunit. Transgenic Res. 18(2): 185-192.
23.
Mishra S., Yadav D.K., Tuli R. (2006) Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. J. Biotechnol. 127(1): 95-108.
24.
Moreno-Altamirano M.M., Aguilar-Carmona I., Sanchez-Garcia F.J. (2007) Expression of GM1, a marker of lipid rafts, defines two subsets of human monocytes with differential endocytic capacity and lipopolysaccharide responsiveness. Immunology 120(4): 536-543.
25.
Nochi T., Takagi H., Yuki Y., Yang L., Masumura T., Mejima M., Nakanishi U., Matsumura A., Uozumi A., Hiroi T. et al. (2007) Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc. Natl. Acad. Sci. USA 104(26): 10986-10991.
26.
Nuermberger E.L., Yoshimatsu T., Tyagi S., Bishai W.R., Grosset J.H. (2004) Paucibacillary tuberculosis in mice after prior aerosol immunization with Mycobacterium bovis BCG. Infect. Immun. 72(2): 1065-1071.
27.
Qiu S., Ren X., Ben Y., Ren Y., Wang J., Zhang X., Wan Y., Xu J. (2014) Fusion-expressed CTB improves both systemic and mucosal T-cell responses elicited by an intranasal DNA priming/intramuscular recombinant vaccinia boosting regimen. J. Immunol. Res. 2014: 308732. DOI: 10.1155/2014/308732.
28.
Qu Q., Wei L., Satoh H., Kumamaru T., Ogawa M., Takaiwa F. (2002) Inheritance of alleles for glutelin alpha-2 subunit genes in rice and identification of their corresponding cDNA clone. Theor. Appl. Genet. 105(8): 1099-1108.
29.
Rasul N., Ali K.M., Islam R., Seraj Z.I. (1997) Transformation of an indica rice cultivar Binnatoa with Agrobacterium. Plant Tissue Cult. 7(2): 71-80.
30.
Reddy Chichili V.P., Kumar V., Sivaraman J. (2013) Linkers in the structural biology of protein-protein interactions. Protein Sci. 22(2): 153-167.
31.
Rigano M.M., Dreitz S., Kipnis A.P., Izzo A.A., Walmsley A.M. (2006) Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine 24(5): 691-695.
32.
Sambrook J., Fritsch J., Maniatis E.F. (1987) Molecular cloning: a laboratory manual, 2nd Edn. Cold Spring Harbor: Cold Spring Harbor Laboratory.
33.
Sangha J.S., Gu K., Kaur J., Yin Z. (2010) An improved method for RNA isolation and cDNA library construction from immature seeds of Jatropha curcas L. BMC Res. Notes 3: 126.
34.
Schouten A., Roosien J., van Engelen F.A., de Jong G.I., Borst- Vrenssen A.T., Zilverentant J.F., Bosch D., Stiekema W.J., Gommers F.J., Schots A. (1996) The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30(4): 781-793.
35.
Sharma M.K., Singh N.K., Jani D., Sisodia R., Thungapathra M., Gautam J.K., Meena L.S., Singh Y., Ghosh A., Tyagi A.K. et al. (2008) Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). Plant Cell Rep. 27(2): 307-318.
36.
Stratmann T. (2015) Cholera toxin subunit B as adjuvant – an accelerator in protective immunity and a break in autoimmunity. Vaccines (Basel) 3(3): 579-596.
37.
Streatfield S.J., Jilka J.M., Hood E.E., Turner D.D., Bailey M.R., Mayor J.M., Woodard S.L., Beifuss K.K., Horn M.E., Delaney D.E. et al. (2001) Plant-based vaccines: unique advantages. Vaccine 19(17-19): 2742-2748.
38.
Suzuki Y., Mae T., Makino A. (2008) RNA extraction from various recalcitrant plant tissues with acethyltrimethylammonium bromide-containing buffer followed by an acid guanidium thiocyanate-phenol-chloroform treatment. Biosci. Biotechnol. Biochem. 72(7): 1951-1953.
39.
Svennerholm A.M., Jertborn M., Gothefors L., Karim A., Sack D.A., Holmgren J. (1983) Current status of an oral B subunit whole cell cholera vaccine. Dev. Biol. Stand. 53: 73- 79.
40.
Tang J., Yam W.C., Chen Z. (2016) Mycobacterium tuberculosis infection and vaccine development. Tuberculosis (Edinb) 98: 30-41.
41.
Tiwari S., Verma P.C., Singh P.K., Tuli R. (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol. Adv. 27(4): 449-467.
42.
Walmsley A.M., Arntzen C.J. (2000) Plants for delivery of edible vaccines. Curr. Opin. Biotech. 11(2): 126-129.
43.
Wandelt C.I., Khan M.R.I., Craig S., Schroeder H.E., Spen er D., Higgins T.J. (1992) Vicilin with carboxy terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J. 2(2): 181-192.
44.
Wang J., Thorson L., Stokes R.W., Santosuosso M., Huygen K., Zganiacz A., Hitt M., Xing Z. (2004) Single mucosal, but not parenteral, immunization with recombinant adenoviral- based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol. 173(10): 6357-6365.
45.
Zhang Y., Chen S., Li J., Liu Y., Hu Y., Cai H. (2012) Oral immunogenicity of potato-derived antigens to Mycobacterium tuberculosis in mice. Acta Biochim. Biophys. Sinica: gms068.