RESEARCH PAPER
Molecular characterization of Iranian black cumin (Nigella sativa L.) accessions using RAPD marker
 
More details
Hide details
1
Shirvan Higher Education Complex, Ferdowsi University of Mashhad, Mashhad, Iran
 
2
Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran
 
 
Submission date: 2016-10-09
 
 
Final revision date: 2016-11-26
 
 
Acceptance date: 2016-12-14
 
 
Publication date: 2017-07-18
 
 
BioTechnologia 2017;98(2):97-102
 
KEYWORDS
TOPICS
ABSTRACT
Nigella sativa L. (2n = 12) is an annual flowering plant belonging to the family Ranunculaceae known for medicinal properties demonstrating valuable components that are widely used in food and pharmaceutical industries. Nine Random Amplified Polymorphic DNA markers (RAPD) were used in this study, in order to characterize the genetic variation of 16 black cumin varieties collected from Iran’s different regions. The amplification reaction produced 95 bands with sizes ranging from about 100 to 500 bp. The average frequency of bands was 20 while the averages of polymorphism were about 8.11 per primer. The Jaccard similarity coefficient and the Unweighted Pair-Group Method Analysis (UPGMA) clustering algorithm were applied to the RAPD data sets in order to understand the genetic relationships among the tested accessions. The accessions were categorized into three groups using cluster analysis. The results were supported by the Principal Coordinate Analysis (PCoA) cluster analysis. The results showed that the tested black cumin genotypes had a high genetic diversity and could be used in black cumin germplasm conservation programs. Moreover, the RAPD is a versatile approach to the diversity analysis of native accessions of black cumin.
REFERENCES (21)
1.
Anderson M.J., Willis T.J. (2003) Canonical analysis of principle coordinates: a useful method of constrained ordination for ecology. Ecology 84: 511-525.
 
2.
Doyle J.J., Doyle J.L. (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
 
3.
Hajhashemi V., Ghannadi A., Jafarabadi H. (2004) Black cumin seed essential oil, as a potent analgesic and anti-inflammatory drug. Phytother. Res. 18: 195-199.
 
4.
Hamrick J.L., Loveless M.D. (1989) The genetic structure of tropical tree populations: associations with reproductive biology. [in:] Plant Evolutionary Ecology. Eds. Bock J.H., Linhart Y.B. West View Press, Boulder Colorado: 131-146.
 
5.
Iqbal M.S., Ghafoor A., Qureshi A.S., Ahmad Z. (2005) Biodiversity and cultivation potential of black cumin (Nigella sativa L.). [in:] International symposium: Medicinal plants: linkages beyond national boundaries. Eds. Shinwari Z.K., Watanaba T., Ali M., Anwar R. National Agricultural Research Centre, Islamabad 12: 105-116.
 
6.
Iqbal M.S., Nadeem S., Mehmboob S., Ghafoor A., Rajoka M.I., Qureshi A.S., Bushra N. (2011) Exploring PCRRAPD markers genotype specific fingerprinting and efficient DNA extraction from black seeds (Nigella sativa L.). Turkish J. Agricult. Forest. 35(6): 569-578.
 
7.
Islam M.A., Meister A., Schubert V., Kloppstech K., Esch E. (2007) Genetic diversity and cytogenetic analysis in Curcuma zedoary (Christm) Roscoe from Bangladesh. Gen. Resour. Crop Evolut. 54: 149-156.
 
8.
Kapital B., Feyissa T., Petros Y. Mohammed S. (2015) Molecular diversity study of black cumin (Nigella sativa L.) from Ethiopia as revealed by inter simple sequence repeat (ISSR) markers. Afr. J. Biotech. 14(18): 1543-1551.
 
9.
Khan N., Sharma S., Sultana S. (2003) Nigella sativa (black cumin) ameliorates potassium bromate-induced early events of carcinogenesis diminution of oxidative stress. Human Exp. Toxicol. 22: 193-203.
 
10.
Mahmoudi B., Panahi B., Mohammadi S.A., Daliri M., Babayev M.S. (2014) Microsatellite based phylogeny and bottleneck studies of Iranian indigenous goat populations. Animal Biotech. 25(3): 210-222.
 
11.
Mashhadian N.V., Rakhshandeh H. (2005) Antibacterial and antifungal effects of Nigella sativa extracts against S. aureus, P. aeruginosa and C. albicans. Pakistan J. Med. Sci. 21(1): 47-52.
 
12.
Mohamed A., Bhardwaj H., Hamama A., Webber C. (1995) Chemical composition of Kenaf (Hibiscus cannabinus)L. seed oil. Industr. Crops Prod. 4(3): 157-165.
 
13.
Palai S.K., Rout G.R. (2007) Identification and genetic variation among eight varieties of ginger by using random amplified polymorphic DNA markers. Plant Biotech. 24: 417-420.
 
14.
Panahi B., Ghorbanzadeh Neghab M. (2013a) Genetic characterization of Iranian safflower (Carthamus tinctorius L.) using inter simple sequence repeats (ISSR) markers. Physiol. Mol. Biol. Plants 19(2): 239-243.
 
15.
Panahi B., Afzal R., Mahmoodnia M., Ghorbanzadeh Neghab M. (2013b) Relationship among AFLP, RAPD marker diversity and Agromorphological traits in safflower (Carthamus tinctorius L.). World Appl. Sci. J. 26(2): 213-223.
 
16.
Panahi B., Shahriari Ahmadi F., Marashi H., Zare M., Moshtaghi N. (2013c) Molecular cloning and expression analysis of Na+/H+ antiporter in monocot halophyte Leptochloa fusca L. NJAS-Wageningen J. Life Sci. (65): 87-93. doi: 10.1016/j.njas.2013.05.002.
 
17.
Ramadan M.F., Morsel J.T. (2003) Analysis of glycolipids from black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and Niger (Guizotia abyssinica Cass.) oil seeds. Food Chem. 80: 197-204.
 
18.
Rohlf F.G. (2000) NTsys-pc numerical taxonomy and multivariate system version 2.0. Applied Biostatistics. Inc, New York.
 
19.
Shahriari Ahmadi F., Panahi B., Marashi H., Moshtaghi N., Mirshamsi Kakhki A. (2013) Coordinate up-regulation of vacuolar Na+/H+ antiporter and V-PPase to early time salt stress in monocot halophyte Leptochloa fusca roots. J. Agricult. Sci. Technol. 15: 369-376.
 
20.
Sneath P.H.A., Sokal R.R. (1973) Numerical taxonomy: the principles and practice of numerical classification. San Francisco: Freeman 573: 566-576.
 
21.
Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531-6535.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top