RESEARCH PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Background:
The prevailing public health threat posed by malaria, especially in developing countries, remains a serious concern despite the availability of preventive and control measures. While vaccination offers a powerful means of combating malaria, it has not been fully exploited due to previous unsuccessful attempts before the launch of the RTS,S vaccine. A major challenge in malaria vaccine development continues to be the identification of effective targets capable of eliciting robust immunity, given the complexity of the parasites’ life cycle. Leveraging on the breakthrough of the newly approved malaria vaccine, efforts to develop more effective prophylactic solutions continue with renewed determination.

Material and methods:
In this study, a standard structural bioinformatics pipeline was employed to design a multiepitope subunit vaccine against Plasmodium, particularly P. falciparum. Thirty subunit epitopes were mined from selected variant surface antigens of P. falciparum proteins expressed at different stages of its life cycle, based on their vaccine-likeness. These epitopes were conjugated with suitable adjuvants and linkers into a vaccine construct, which was then subjected to stringent downstream analyses.

Results:
Out of an initial pool of 133 epitopes, 30 vaccine-fit epitopes were selected, resulting in a final vaccine construct comprising 570 amino acid residues. This included 12 linear B-cells, 11 cytotoxic T-lymphocytes, and 7 helper T-lymphocyte epitopes, all with favorable predicted structural, antigenic, and physicochemical properties. The construct also demonstrated strong global population coverage (95.04%), robust molecular binding, and simulated immune responses.

Conclusions:
With the evolving “Omics” technologies through reverse vaccinology, discovering and designing promising vaccine candidates becomes easier without many challenging experimental rigors. This study highlights the potential of immunoinformatics-aided approaches in accelerating effective malaria vaccine development.
REFERENCES (92)
1.
Aderinto N, Olatunji G, Kokori E. 2024. A perspective on Oxford’s R21/Matrix-M™ malaria vaccine and the future of global eradication efforts. Malar J. 23: 16. https://doi.org/10.1186/s12936....
 
2.
Ali MT, Morshed MM, Hassan FA. 2015. Computational approach for designing a universal epitope-based peptide vaccine against Nipah virus. Interdiscip Sci Comput Life Sci. 7: 177–185.
 
3.
Ali M, Pandey RK, Khatoon N. 2017. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci Rep. 7: 1–13. https://doi.org/10.1038/s41598....
 
4.
Andrade MV, Noronha K, Diniz BPC. 2022. The economic burden of malaria: a systematic review. Malar J. 21: 283. https://doi.org/10.1186/s12936....
 
5.
Anwar S. 2020. Prediction of epitope-based peptide vaccine against the chikungunya virus by immuno-informatics approach. Curr Pharm Biotechnol. 21(4): 325–340.
 
6.
Apweiler R, Bairoch A, Wu CH. 2004. UniProt, the universal protein knowledgebase. Nucleic Acids Res. 32: D115–D119. https://doi.org/10.1093/nar/gk....
 
7.
Asante KP, Mathanga DP, Milligan P, Akech S, Oduro A, Mwapasa V, Moore KA, Kwambai TK, Hamel MJ, Gyan T, et al. 2024. Feasibility, safety, and impact of the RTS,S/AS01E malaria vaccine when implemented through national immunization programmes: evaluation of cluster-randomised introduction of the vaccine in Ghana, Kenya, and Malawi. Lancet 403(10437): 1660–1670. https://doi.org/10.1016/S0140-....
 
8.
Atapour A, Negahdaripour M, Ghasemi Y, Razmjuee D, Savardashtaki A, Mousavi SM. 2020. In silico designing a candidate vaccine against breast cancer. Int J Pept Res Ther. 26: 369–380. https://doi.org/10.1007/s10989....
 
9.
Bashir Z, Ahmad SU, Kiani BH, Jan Z, Khan N, Khan U. 2021. Immunoinformatics approaches to explore B and T cell epitope-based vaccine designing for SARS-CoV-2 virus. Pak J Pharm Sci. 34: 28–49.
 
10.
Beeson JG, Kurtovic L, Dobano C, Opi DH, Chan JA, Feng G, Good MF, Reiling L, Boyle MJ. 2019. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med. 11: eaau1458. https://doi.org/10.1126/scitra....
 
11.
Bhalerao P, Singh S, Prajapati VK, Bhatt TK. 2024. Exploring malaria parasite surface proteins to devise a highly immunogenic multi-epitope subunit vaccine for Plasmodium falciparum. J Genet Eng Biotechnol. 22(2): 100377. https://doi.org/10.1016/j.jgeb....
 
12.
Biamba C, Moustafa Budair M, Mohamed Mousa H, Rugendabanga E, Jafar F, Kihanduka E, Hangi S, Onesime J, Akilimali A. 2024. Malaria vaccine – a solution to the endemic burden of malaria in the Democratic Republic of the Congo: a call for action. New Microbes New Infect. 62: 101497. https://doi.org/10.1016/j.nmni....
 
13.
Binkowski TA, Naghibzadeh S, Liang J. 2003. CASTp: computed atlas of surface topography of proteins. Nucleic Acids Res. 31: 3352–3355. https://doi.org/10.1093/nar/gk....
 
14.
Bin-Sayed S, Nain Z, Khan MSA, Abdulla F, Tasmin R, Adhikari UK. 2020. Exploring Lassa virus proteome to design a multi-epitope vaccine through immunoinformatics and immune simulation analyses. Int J Pept Res Ther. 26: 2089–2107. https://doi.org/10.1007/S10989....
 
15.
Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. 2006. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 17: 153. https://doi.org/10.1186/1471-2....
 
16.
Castiglione F. 2012. How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Comput Math Methods Med. 84: 23–29.
 
17.
Chan JA, Fowkes FJ, Beeson JG. 2014. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci. 71(19): 3633–3657. https://doi.org/10.1007/s00018....
 
18.
Chavda VP, Soni S, Vora LK, Soni S, Khadela A, Ajabiya J. 2022. mRNA-based vaccines and therapeutics for COVID-19 and future pandemics. Vaccines 10(12): 2150. https://doi.org/10.3390/vaccin....
 
19.
Chengxin Z, Freddolino PL, Zhang Y. 2017. Cofactor: improved protein function prediction by combining structure, sequence, and protein-protein interaction information. Nucleic Acids Res. 45(W1): W291–W299. https://doi.org/10.1093/nar/gk....
 
20.
Chutiyami M, Saravanakumar P, Bello UM. 2024. Malaria vaccine efficacy, safety, and community perception in Africa: a scoping review of recent empirical studies. Infection 52: 2007–2028. https://doi.org/10.1007/s15010....
 
21.
Dasgupta RR, Mao W, Ogbuoji O. 2022. Addressing child health inequity through case management of under-five malaria in Nigeria: an extended cost-effectiveness analysis. Malar J. 21: 81. https://doi.org/10.1186/s12936....
 
22.
Datoo MS, Dicko A, Tinto H, Ouédraogo J, Hamaluba M, Olotu A, Beaumont E, Ramos Lopez F, Natama HM, Weston S, et al. 2024. Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet 403(10426): 533–544. https://doi.org/10.1016/S0140-....
 
23.
Debnath U, Ghosh S. 2024. Systems biology: a new era for vaccine development; from deductive toward inductive. In: Joshi S, Ray RR, Nag M, Lahiri D (eds.). Systems bio­logy approaches: prevention, diagnosis, and understanding mechanisms of complex diseases. Springer. https://doi.org/10.1007/978-98....
 
24.
Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. 2020. Performance and its limits in rigid body protein-protein docking. Structure 28(9): 1071–1081. https://doi.org/10.1016/ j.str.2020.06.006.
 
25.
Dimitrov I, Naneva L, Doytchinova I, Bangov I. 2014. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 30: 846–851. https://doi.org/10.1093/bioinf....
 
26.
El-Moamly AA, El-Sweify MA. 2023. Malaria vaccines: the 60-year journey of hope and final success – lessons learned and future prospects. Trop Med Health. 51: 29. https://doi.org/10.1186/s41182....
 
27.
Emran TB, Iyori M, Ono Y, Amelia F, Yusuf Y, Islam A, Alam A, Tamura M, Ogawa R, Matsuoka H, et al. 2018. Baculovirus-induced fast-acting innate immunity kills liver-stage Plasmodium. J Immunol. 201(8): 2441–2451. https://doi.org/10.4049/jimmun....
 
28.
Fatimawali, Tallei TE, Kepel BJ, Alorabi M, El-Shehawi AM, Bodhi W, Tumilaar SG, Celik I, Mostafa-Hedeab G, Mohamed AA, Emran TB. 2021. Appraisal of bioactive compounds of betel fruit as antimalarial agents by targeting plasmepsin 1 and 2: a computational approach. Pharmaceuticals 14(12): 1285. https://doi.org/10.3390/ph1412....
 
29.
Frimpong A, Kusi KA, Ofori MF, Ndifon W. 2018. Novel strategies for malaria vaccine design. Front Immunol. 9: 2769.
 
30.
Ghazy RM, Kyei-Arthur F, Saleeb M, Kyei-Gyamfi S, Abutima T, Sakada IG, Alshaikh A, Hussein M, Hussein MF. 2024. Examining vaccine hesitancy among Ghanaian parents for the R21/Matrix-M malaria vaccine. J Pediatr Health Care. 38: 873-885. https://doi.org/10.1016/j.pedh....
 
31.
Gholam GM, Irsal RAP, Mahendra FR, Dwicesaria MA, Sire-gar JE, Ansori ANM, Zainul R. 2023. In silico computational prediction of Saussurea pulchella compounds with inhibitory effects on plasmepsin X in Plasmodium falciparum. Inform Med Unlocked. 49: 101549. https://doi.org/10.1016/j.imu.....
 
32.
Habib A, Liang Y, Xu X, Zhu N, Xie J. 2023. Immunoinformatic identification of multiple epitopes of gp120 protein of HIV-1 to enhance the immune response against HIV-1 infection. Int J Mol Sci. 25(4): 24–32. https://doi.org/ 10.3390/ijms25042432.
 
33.
Hassan M. 2020. Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type 1 and type 2): an exploratory immunoinformatic approach. J Biomol Struct Dyn. 38(10): 2898.
 
34.
Hasyim AA, Iyori M, Mizuno T, Abe Y, Yamagoshi I, Yusuf Y, Syafira I, Shahnaij M, Sakamoto A, Yamamoto Y, et al. 2023. Adeno-associated virus-based malaria booster vaccine following attenuated replication-competent vaccinia virus LC16m8 priming. Parasitol Int. 92: 102652. https://doi.org/10.1016/j.pari....
 
35.
Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. 2017. Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics 33(19): 3098–3100. https://doi.org/10.1093/bioinf....
 
36.
Heo L, Park H, Seok C. 2013. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 41(W1): W384–W388. https://doi.org/10.1093/nar/gk....
 
37.
Hermanto F, Subarmas A, Sutaijiatmo AB, Berbudi A. 2022. Apigenin: a review of mechanisms of action as antimalarial. J Pharm Technol. 15(1): 458–466. http://doi.org/ 10.52711/0974-360X.2022.00075.
 
38.
Islam I, Moslema JM, Saloa S. 2022. Application of reverse vaccinology to design a multi-epitope subunit vaccine against a new strain of Aeromonas veronii. J Genet Eng Biotechnol. 20: 118. https://doi.org/10.1186/s43141....
 
39.
Jeyabaskar Sganya, Mahendran R, Hubert. 2020. Computational studies on differential gene expression in malaria microarray dataset. Res J Pharm Technol. 13(3): 1368–1376. http://doi.org/10.5958/0974-36....
 
40.
Kanoi BN, Maina M, Likhovole C, Kobia FM, Gitaka J. 2022. Malaria vaccine approaches leveraging technologies optimized in the COVID-19 era. Front Trop Dis. 3: 988665. https://doi.org/10.3389/fitd.2....
 
41.
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C. 2017. The ClusPro Kurtovic web server for protein–protein docking. Nat Protoc. 12(2): 255–278. https://doi.org/ 10.1038/nprot.2016.169.
 
42.
Kumar A, Rathi E, Kini SG. 2021. Computational design of a broad-spectrum multi-epitope vaccine candidate against seven strains of human coronaviruses. 3 Biotech 12: 240. https://doi.org/10.1007/s13205....
 
43.
Kumar KM, Karthik Y, Ramakrishna D, Balaji S, Skariyachan S, Murthy TPK, Sakthivel KM, Alotaibi BS, Shukry M, Sa- yed SM, Mushtaq M. 2023. Immunoinformatic exploration of a multi-epitope based peptide vaccine candidate targeting emerging variants of SARS-CoV. Front Microbiol. 14: 1251716. https://doi.org/10.3389/fmicb.....
 
44.
Kurtovic L, Agius PA, Feng G, Drew DR, Ubillos I, Sacarlal J, Aponte JJ, Fowkes FJI, Dobano C, Beeson JG. 2019. Induction and decay of functional complement-fixing antibodies by the RTS,S malaria vaccine in children, and a negative impact of malaria exposure. BMC Med. 17: 1–14. https://doi.org/10.1186/s12916....
 
45.
Laver WG, Air GM, Webster RG, Smith-Gill SJ. 1990. Epitopes on protein antigens: misconceptions and realities. Cell 61: 553–556.
 
46.
Madanagopal P, Muthusamy S, Pradhan SN, Prince PR. 2023. Construction and validation of a multi-epitope in-silico vaccine model for lymphatic filariasis by targeting Brugia malayi: a reverse vaccinology approach. Bull Natl Res Cent. 47(1): 47. https://doi.org/10.1186/s42269....
 
47.
Maharaj L, Adeleke VT, Fatoba AJ, Adeniyi AA, Tshilwane SI, Adeleke MA, Maharaj R, Okpeku M. 2021. Immunoinformatics approach for multi-epitope vaccine design against Plasmodium falciparum malaria. Infect Genet Evol. 92: 104875. https://doi.org/10.1016/j.meeg....
 
48.
Mahmud S, Rafi MO, Paul GK, Promi MM, Shimu MS, Bis- was S, Emran TB, Dhama K, Alyami SA, Moni MA, Saleh MA. 2021. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci Rep. 11(1): 1–20. https://doi.org/10.1038/s41598....
 
49.
Malik S, Waheed Y. 2024. Recent advances on vaccines against malaria: a review. Asian Pac J Trop Med. 17(4): 143–159. https://doi.org/10.4103/apjtm.....
 
50.
Mandloi N, Sharma R, Sainy J, Pattil S. 2018. Exploring structural requirements for design and development of compounds with antimalarial activity via CoMFA, CoMSIA, and HQSAR. Res J Pharm Technol. 11(8): 3341–3349. http://doi.org/10.5958/0974-36....
 
51.
Martinelli DD. 2022. In-silico vaccine design: a tutorial in immunoinformatics. Healthc Anal. 2: 100044. https://doi.org/10.1016/j.heal....
 
52.
Matarazzo L, Bettencourt PJG. 2023. mRNA vaccines: a new opportunity for malaria, tuberculosis, and HIV. Front Immunol. 14: 1172691. https://doi.org/10.3389/fimmu. 2023.1172691.
 
53.
Mehlin C, Boni E, Buckner F, Engel L, Feist T, Gelb M, Haji L, Kim D, Liu C, Mueller N, et al. 2006. Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes. Mol Biochem Parasitol. 148: 144–160.
 
54.
Michel T, Hentges F, Zimmer J. 2013. Consequences of the crosstalk between monocytes/macrophages and natural killer cells. Front Immunol. 3: 37105. https://doi.org/ 10.3389/fimmu.2012.00403.
 
55.
Nandi M, Chowdhury S, Islam M, Rana M, Emran T. 2022. Computational identification of dual-target inhibitors of PfDHODH and PfCytbc1 complex against drug-resistant malaria. 2nd International Conference on Genomics, Na­notech and Bioengineering-2022 (ICGNB-2022). https:// doi.org/10.13140/RG.2.2.17368.37128.
 
56.
Nnaji A, Ozdal MA. 2023. Perception and awareness towards malaria vaccine policy implementation in Nigeria by health policy actors. Malar J. 22: 111. https://doi.org/10.1186/s12936....
 
57.
Oduoye MO, Haider MU, Marsool MDM, et al. 2024. Unlocking the potential of novel RTS,S/AS01, and R21/Matrix-M™ malaria vaccines in African nations. Health Sci Rep. 7: e1797. https://doi.org/10.1002/hsr2.1....
 
58.
Okesanya OJ, Atewologun F, Lucero-Prisno DE, Adigun OA, Oso TA, Manirambona E, Olabode NO, Eshun G, Agboola AO, Okon II. 2024. Bridging the gap to malaria vaccination in Africa: challenges and opportunities. J Med Surg Public Health 2: 100059. https://doi.org/10.1016/j.glme.... 2024.100059.
 
59.
Olawale F, Olofinsan K, Ogunyemi O, Gyebi G, Ibrahim I. 2022. Homology modeling, vHTS, pharmacophore, molecular docking, and molecular dynamics studies for the identification of natural compound-derived inhibitor of MRP3 in acute leukemia. Chem Pap. 76: 3729–3757. https://doi.org/10.1007/s11696....
 
60.
Pandey RK, Tarun KB, Vijay KP. 2018. Novel immunoinforma­tics approaches to design multi-epitope subunit vaccine for malaria by investigating Anopheles salivary protein. Sci Rep. 8: 1125. https://doi.org/10.1038/s41598....
 
61.
Patel PN, Dickey TH, Diouf A, Salinas ND, McAleese H, Ouahes T, Long CA, Miura K, Lambert LE, Tolia NH. 2023. Structure-based design of a strain transcending AMA1-RON2L malaria vaccine. Nat Commun. 14(1): 1–16. https:// doi.org/10.1038/s41467-023-40878-7.
 
62.
Pendyala G, Calvo-Calle JM, Moreno A, Kane RS. 2023. A multivalent Plasmodium falciparum circumsporozoite protein-based nanoparticle malaria vaccine elicits a robust and durable antibody response against the junctional epitope and the major repeats. Bioeng Transl Med. 8(4): e10514. https://doi.org/10.1002/btm2.1....
 
63.
Ponomarenko JH, Wei L, Nicholas F, Philip EB, Alessandro S, Bjoern P. 2008. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 9: 514. https://doi.org/10.1186/1471-2....
 
64.
Pritam M, Garima S, Suchit S, Akhilesh KS, Satarudra PS. 2019. Exploitation of reverse vaccinology and immunoinformatics as promising platforms for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum. BMC Bioinform. 19(13): 468. https://doi.org/10.1186/s12859....
 
65.
Rapin N, Lund O, Bernaschi M, Castiglione F. 2010. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS Ona 5: e9862. https://doi.org/10.1371/journa....
 
66.
Reynisso B, Alvarez B, Paul S. 2020. NetMHCpan-4.1 and Net-MHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48: W449–W454. https://doi.org/10.1093/nar/gk....
 
67.
Rostaminia S, Aghaei SS, Farahmand B, Nazari R, Ghaemi A. 2021. Computational design and analysis of a multi-epitope vaccine against influenza A virus. Int J Pept Res Ther. 27(4): 2625–2638. https://doi.org/10.1007/s10989....
 
68.
Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 5: 725–738. https://doi.org/10.1038/nprot.....
 
69.
Sagara SA, Healy MH, Assadou EE, Gabriel M, Kone K, Sissoko I, Tembine MA, Guindo M, Doucoure K, Niaré A, et al. 2018. Safety and immunogenicity of Pfs25H-EPA/ Alhydrogel, a transmission-blocking vaccine against Plasmodium falciparum: a randomized, double-blind, comparator-controlled, dose-escalation study in healthy Malian adults. Lancet Infect Dis. 18: 969–982. https://doi.org/ 10.1016/S1473-3099(18)30344-X.
 
70.
Sanami S, Nazarian S, Ahmad S, Raeisi E, Tahir Ul Qamar M, Tahmasebian S, Pazoki-Toroudi H, Fazeli M, Ghatreh Samani M. 2023. In silico design and immunoinformatics analysis of a universal multi-epitope vaccine against monkeypox virus. PLoS One 18(5): e0286224. https://doi.org/10.1371/journa....
 
71.
Schieck E, Poole EJ, Rippert J. 2017. Plasmodium falciparum variant erythrocyte surface antigens: a pilot study of antibody acquisition in recurrent natural infections. Malar J. 16: 450. https://doi.org/10.1186/s12936....
 
72.
Serwanga J, Ankunda V, Katende JS, Baine C, Oluka GK, Odoch G, Nantambi H, Mugaba S, Namuyanja A, Ssali I, et al. 2024. Sustained S-IgG and S-IgA antibodies to Mo­derna’s mRNA-1273 vaccine in a Sub-Saharan African cohort suggests need for booster timing reconsiderations. Front Immunol. 15: 1348905. https://doi.org/10.3389/fimmu.....
 
73.
Shaikh MS, Islam F, Gargote PP, Gaikwad RR, Dhupe KC, Khan SL, Siddiqui FA, Tapadiya GG, Ali SS, Dey A, Emran TB. 2022. Potential EphA2 receptor blockers involved in cerebral malaria from Taraxacum officinale, Tinospora cordifolia, Rosmarinus officinalis, and Ocimum basilicum: a computational approach. Pathogens 11(11): 1296. https://doi.org/10.3390/pathog....
 
74.
Sharma R, Kumawat MK, Sharma GK. 2022. In-silico design and molecular docking studies of some novel 4-aminoquinoline-monastrol hybrids for their antimalarial activity. Res J Pharm Technol. 15(10): 4589–4593. http://doi.org/10.52711/0974-3....
 
75.
Singh A, Thakur M, Sharma LK, Chandra K. 2020. Designing a multi-epitope peptide based vaccine against SARS-CoV-2. Sci Rep. 10: 16219. https://doi.org/10.1038/s41598....
 
76.
Sobolev OV, Afonine PV, Moriarty NW, Hekkelman ML, Joosten RP, Perrakis A, Adams PD. 2020. A global Rama­chandran score identifies protein structures with unlikely stereochemistry. Structure 28(11): 1249–1261. https://doi.org/10.1016/j.str.....
 
77.
Srivastava S, Verma S, Kamthania M. 2020. Structural basis to design multi-epitope vaccines against novel coronavirus 19 (COVID-19) infection, the ongoing pandemic emergency: an in silico approach. bioRxiv https://doi.org/10.1101/2020.0....
 
78.
Syed YY. 2022. RTS,S/AS01 malaria vaccine (Mosquirix®): a profile of its use. Drugs Ther Perspect. 38(9): 373–381. https://doi.org/10.1007/s40267....
 
79.
Thillainayagam M, Ramaiah S. 2016. Mosquito, malaria and medicines – a review. Res J Pharm Technol. 9(8): 1268–1276. https://doi.org/10.5958/0974-3....
 
80.
Tsoumani ME, Voyiatzaki C, Efstathiou A. 2023. Malaria vaccines: from the past towards the mRNA vaccine era. Vaccines 11(9): 1452. https://doi.org/10.3390/vaccin....
 
81.
Tukwasibwe S, Mboowa G, Sserwadda I. 2023. Impact of high human genetic diversity in Africa on immunogenicity and efficacy of RTS,S/AS01 vaccine. Immunogenetics 75: 207–214. https://doi.org/10.1007/s00251....
 
82.
Vaillant AAJ, Jamal Z, Patel P, Ramphul K. 2023. Immunoglobulin. 2nd ed. StatPearls. https://www.ncbi.nlm.nih.gov/b....
 
83.
Verma SK, Mahajan P, Singh NK, Gupta A, Aggarwal R, Rappuoli R, Johri AK. 2023. New-age vaccine adjuvants, their development, and future perspective. Front Immunol. 14: 1043109. https://doi.org/10.3389/fimmu.....
 
84.
Wahlgren M, Goel S, Akhouri RR. 2017. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 15(8): 479–491. https://doi.org/10.1038/nrmicr....
 
85.
Wei Z, Zhang C, Yang L, Robin P, Brown EW, Zhang Y. 2021. Folding non-homology proteins by coupling deep- learning contact maps with I-TASSER assembly simulations. Cell Rep Methods 1: 100014. https://doi.org/10.1016/j.crme....
 
86.
Wiederstein M, Sippl MJ. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35: W407. https://doi.org/10.1093/nar/gk....
 
87.
Wilkins M. 2008. Protein identification and analysis tools in the ExPASy server. In: Protein Identification and Analysis Tools, pp. 531–552.
 
88.
World Health Organization. 2017. World health statistics: monitoring health for the SDGs, sustainable development goals. Geneva: WHO. https://www.who.int/publicatio....
 
89.
World Health Organization. 2019. World malaria report. Geneva: WHO. www.who.int/malaria/publications/world- malaria-report-2019.
 
90.
World Health Organization. 2022. World malaria report: WHO/UCN/GMP/2022.01 Rev. 2. WHO www.who.int/malaria/978924006489.
 
91.
Yang C, Chen EA, Zhang Y. 2022. Protein–ligand docking in the machine-learning era. Molecules 27(14). https://doi.org/10.3390/molecu....
 
92.
Yeni Y, Nining N. 2022. Homology modeling epitopes of Kirsten rat sarcoma (KRAS) G12D, G12V, and G12R as pancreatic ductal adenocarcinoma vaccine candidates. Turk Comput Theor Chem. 7(1): 62–71. https://doi.org/ 10.33435/tcandtc.1140158.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top