Simultaneous fermentative chitinase and β-1,3 glucanase production from Streptomyces philanthi RM-1-1-38 and their antifungal activity against rice sheath blight disease
 
More details
Hide details
1
College of Innovation and Management, Songkhla Rajabhat University, Songkhla, Thailand
 
2
Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
 
 
Submission date: 2016-03-26
 
 
Final revision date: 2016-08-06
 
 
Acceptance date: 2016-08-10
 
 
Publication date: 2017-01-13
 
 
BioTechnologia 2016;97(4):271-284
 
KEYWORDS
TOPICS
ABSTRACT
Chitinase and β-1,3 glucanase are enzymes that play important roles in the biocontrol of fungal plant pathogens. The effects of environmental conditions and culture medium composition on simultaneous chitinase and β-1,3 glucanase production from Streptomyces philanthi RM-1-138 were investigated using a conventional (one-factorat- a-time) method and a response surface methodology (RSM), respectively. The optimum cultivation conditions were at pH 7.5 and a temperature of 30EC. The optimized medium (4.88 g @ l!1 chitin, 6.27 g @ l!1 glucose, and 17.05 g @ l!1 malt extract) exhibited 53- and 80-fold increase in the activity of chitinase (0.53 U @ ml!1) and β-1,3 glucanase (8.79 U @ ml!1), respectively, compared to the original medium. The culture filtrate from the original and the optimized medium were partially purified and tested (by agar-well diffusion assay) for their antifungal activities against Rhizoctonia solani PTRRC-9 compared to the chemical fungicides carbendazim® and propiconazole ® (100 μg @ ml!1). The partially purified enzymes from the optimized medium exhibited 4.0-fold stronger antifungal activities against R. solani PTRRC-9 compared to that from the original medium and equal to that of
the chemical fungicide propiconazole® but slightly lower than that of carbendazim®.
REFERENCES (58)
1.
Acikel U., Ersan M., Acikel Y.S. (2010) Optimization of critical mediumcomponent using response surface methodology for lipase production by Rhizopus delemar. Food Bioprod. Process. 88: 31-39.
 
2.
Bas D., Boyaci I.H. (2007) Modeling and optimization I: usability of response surface methodology. Food Engineer. 78: 836-845.
 
3.
Boukaew S., Chuenchit S., Petcharat V. (2011) Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. BioControl 56: 365-374.
 
4.
Boukaew S., Plubrukam A., Prasertsan P. (2013a) Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. BioControl 58: 471-482.
 
5.
Boukaew S., Klinmanee C., Prasertsan P. (2013b) Potential for the integration of biological and chemical control of sheath blight disease caused by Rhizoctonia solani on rice. World J. Microbiol. Biotechol. 29: 1885-1893.
 
6.
Boukaew S., Prasertsan P. (2014c) Suppression of rice sheath blight disease using heat stable culture filtrate of Streptomyces philanthi RM-1-138. Crop Protect. 61: 1-10.
 
7.
Boukaew S., Prasertsan P. (2014d) Factors affecting antifungal activity of Streptomyces philanthi RM-1-138 against Rhizoctonia solani. World J. Microbiol. Biotechnol. 30: 323-329.
 
8.
Box G.E.P., Hunter W.G., Hunter J.S. (1976) Statistic for experimenters. New York: Wiley.
 
9.
Brimner T.A., Boland G.J. (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agricul. Ecosys. Environ. 100: 3-16.
 
10.
Cao F.X. (2003) The technology of the secondary production and secondary metabolism. National Univ. Defense Technol. Press, Beijing, China.
 
11.
Carrillo L., Gomez M.S.E. (1998) Chitinase production by a strain of Streptomyces griseoruber isolated from the rhizosphere of sugarcane. Rev. Argent Microbiol. 30: 73-78.
 
12.
Chang S.C., Wei Y.H., Wei D.L., Chen Y.Y., Jong S.C. (1991) Factors affecting the production of eremofortin C and PR toxin in Penicillium roqueforti. Appl. Environ. Microbiol. 57: 2581-2585.
 
13.
Chellapandi P., Jani H.M. (2008) Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation. Brazilian J. Microbiol. 39: 122-1227.
 
14.
Chernin L., Chet I. (2002) Microbial enzymes in biocontrol of plant pathogens and pests. [in:] Enzymes in the Environment: Activity, Ecology and Applications. Ed. R. Burns, R. Dick, New York, Marcel Dekker Inc.: 171-225.
 
15.
Chu J., Li Y.R. (2002) Modern industrial fermentation regulation. Chem. Ind. Press, Beijing, China.
 
16.
Datta A.R., Kothary M.H. (1993) Effects of glucose, growth temperature and pH on listeriolysin O production in Listeria monocytogenes. Appl. Environ. Microbiol. 59: 3495-3497.
 
17.
Demain A.L. (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 52: 455-463.
 
18.
El-Abyad M.S., EI-Abyad M.A., EI-Shanshoury A.R., EI-Sabbagh S.M. (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil 149: 185-195.
 
19.
El-Tarabily K.A., Soliman M.H., Nassar A.H., Al-Hassani H.A., Sivasithamparam K., McKenna F., Hardy G.E. (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49: 573-583.
 
20.
Errakhi R., Bouteau F., Lebrihi A., Barakate M. (2007) Evidences of biological control capacities of Streptomyces spp against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J. Microbiol. Biotechnol. 23: 1503-1509.
 
21.
Faramarzi M.A., Fazeli M., Yazdi M.T., Adrangi S., Al Ahmadi K.J., Taharrofi N., Aziz Mohseni F. (2009) Optimization of culture condition for prodcution of chitinase by a soil isolate of Massilia timonae. Biotechnol. 8: 93-99.
 
22.
Ghose T.K. (1987) Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268.
 
23.
Gomaa E.Z. (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J. Microbiol. 50: 103-311.
 
24.
Gomes R.C., Semedo L.T.A.S., Soares R.M.A., Linhares L.F., Ulhoa C.J., Alviano C.S. (2001) Purification of thermostable endochitinase from Streptomyces RC1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. J. Appl. Microbiol. 90: 653-661.
 
25.
Hsu S.C., Lockwood J.L. (1975) Powdered chitin agar as a selective medium for enumeration of actinomyceres in water and soil. Appl. Microbiol. 29: 422-426.
 
26.
Jonsbu E., McIntyre M., Nielsen J. (2002) The influence of carbon sources and morphology on nystatin production by Streptomyces noursei. J. Biotechnol. 95: 133-144.
 
27.
Joo J.G. (2005) Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotechnol. Let. 27: 1483-1486.
 
28.
Juan F.M. (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR–PhoP system: an unfinished story. J. Bacteriol. 186: 5197-5201.
 
29.
Juan F.M., Arnold L.D. (1980) Control of antibiotic biosynthesis. Microbiol. Rev. 44: 230-251.
 
30.
Kanjanamaneesathian M., Kusonwiriyawong C., Pengnoo A., Nilratana L. (1998) Screening of potential bacterial antagonists for control of sheath blight in rice and development of suitable bacterial formulation for effective application. Australasian Plant Pathol. 27: 198-206.
 
31.
Kavitha A., Prabhakar P., Vijayalakshmi M., Venkateswarlu Y. (2010) Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333. Res. Microbiol. 161: 335-345.
 
32.
Lebrihi A., Lamsaif D., Lefebvre G., Germain P. (1992) Effect of ammonium ions on spiramycin biosynthesis in Streptomyces ambofaciens. Appl. Microbiol. Biotechnol. 37: 382-387.
 
33.
Li Q., Jiang Y., Ning P., Zheng L., Huang J., Li G., Jiang D., Hsiang T. (2011) Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biol. Control 58: 139-148.
 
34.
Lim H.S., Kim Y.S., Kim S.D. (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl. Environ. Microbiol. 57: 510-516.
 
35.
Miller G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428.
 
36.
Mishra P., Kshirsagar P.R., Nilegaonkar S.S., Singh S.K. (2012) Statistical optimization of medium components for production of extracellular chitinase by Basidiobolus ranarum: a novel biocontrol agent against plant pathogenic fungi. Basic Microbiol. 52: 539-548.
 
37.
Miyashita K., Fujii T., Saito A. (2000) Induction and repression of a Streptomyces lividans chitinase gene promoter in response to various carbon sources. Biosci. Biotechnol. Biochem. 64: 39-43.
 
38.
Mukherjee G., Sen S.K. (2006) Purification, characterization, and antifungal activity of chitinase from Streptomyces venezuelae P10. Curr. Microbiol. 53: 265-259.
 
39.
Narayana K.J.P., Kumar K.G., Vijayalakshmi M. (2008) L-asparaginase production by Streptomyces albidoflavus. Indian J. Microbiol. 48: 331-336.
 
40.
Nawani N.N., Kapadnis B.P. (2005) Optimization of chitinase production using statistics based experimental designs. Pro. Biochem. 40: 651-660.
 
41.
Nizamudeen S., Bajaj B.K. (2009) A novel thermo-alkalitolerant endoglucanase production using cost-effective agricultural residues as substrates by a newly isolated Bacillus sp. NZ. Food Technol. Biotechnol. 47: 435-440.
 
42.
Park J.K., Kim J.D., Park Y., Kim S.K. (2012) Purification and characterization of a 1,3-$-D-glucanase from Streptomyces torulosus PCPOK-0324. Carbohydrate Poly. 87: 1641-1648.
 
43.
Patil H.J., Srivastava A.K., Kumar S., Chaudhari B.L., Arora D.K. (2010) Selective isolation, evaluation and characterization of antagonistic actinomycetes against Rhizoctonia solani. World J. Microbiol. Biotechnol. 26: 2163-2170.
 
44.
Pengnoo A., Kusonwiriyawong C., Nilratana L., Kanjanamaneesathian M. (2000) Greenhouse and field trails of the bacterial antagonists in pellet formulations to suppress sheath blight of rice caused by Rhizoctonia solani. Bio- Control 45: 245-256.
 
45.
Prapagdee B., Kuekulvong C., Mongkolsuk S. (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Inter. J. Biol. Sci. 4: 330-337.
 
46.
Raaijmakers J.M., Vlami M., Souza J.T. (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81: 537-547.
 
47.
Rahulan R., Nampoothiri K.M., Szakacs G., Nagy V., Pandey A. (2009) Statistical optimization of l-leucine amino peptidase production from Streptomyces gedanensis IFO 13427 under submerged fermentation using response surface methodology. Biochem. Engineer. 43: 64-71.
 
48.
Rahulan R., Pandey A., Nampoothiri K.M. (2011) An improved bioprocess for extracellular L-leucine amino peptidase production using Streptomyces gedanensis. Curr. Microbiol. 62: 1009-1016.
 
49.
Ripa F.A., Nikkon F., Zaman S., Khondkar P. (2009) Optimal conditions for antimicrobial metabolites production from a new Streptomyces sp. RUPA-08PR isolated from bangladeshi soil. Mycobiol. 37: 211-214.
 
50.
Shapira R., Ordentlich A., Chet I., Oppennheim A.B. (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathol. 79: 1246- 1249.
 
51.
Singh A.K., Mehta G., Chhatpar H.S. (2009) Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Let. Appl. Microbiol. 49: 708-714.
 
52.
Singh P.P., Shin Y.C., Park C.S., Chung Y.R. (1999) Biological Control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathol. 89: 92-99.
 
53.
Sole M., Francia A., Rius N., Loren J.G. (1997) The role of pH in the glucose effect on prodigiosin production by nonproliferating cells of Serratia marcescens. Let. Appl. Microbiol. 25: 81-84.
 
54.
Taechowisan T., Peberdy J.F., Lumyong S. (2003) Chitinase production by endophytic Streptomyces aureofaciens CMUAc130 and its antagonism against phytopathogenic fungi. Annal. Microbiol. 53: 447-461.
 
55.
Techapun C., Charoenrat T., Poosaran N., Watanabe M., Sasaki K. (2002) Thermostable and alkaline-tolerant cellulase- free xylanase produced by thermotolerant Streptomyces sp. Ab 106. Biosci. Bioengineer. 4: 431-433.
 
56.
Vaidya R.J., Shah I.M., Vyas P.R., Chhatpar H.S. (2001) Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential in antifungal biocontrol. World J. Microbiol. Biotechnol. 17: 691-696.
 
57.
Webster J. (1986) Introduction to Fungi. Cambridge University Press: 57-64.
 
58.
Whipps J.M. (2001) Microbial interactions and biocontrol in the rhizosphere. Exp. Bot. 52: 487-511.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top