RESEARCH PAPER
Suitability of high-throughput DMS-probing data for constraining the secondary structure prediction of small RNAs
 
More details
Hide details
1
Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
 
2
Institute of Bioorganic Chemistry, Polish Acadaemy of Sciences, Poznań, Poland
 
 
Submission date: 2016-05-28
 
 
Final revision date: 2016-06-29
 
 
Acceptance date: 2016-07-14
 
 
Publication date: 2016-11-02
 
 
BioTechnologia 2016;97(3):161-167
 
KEYWORDS
TOPICS
ABSTRACT
The secondary structure prediction has been of special interest of computational scientists for almost a quarter of a century. When the early methods suffered from lack of data, recent high-throughput sequencing techniques extended the traditional RNA footprinting methods to provide the data for whole-transcriptome studies of RNA secondary structures. Although the utility of such data has been well documented for secondary structure of large RNAs, like rRNA or SRP RNA, our interest focuses on small RNAs, which are more challenging in employment of high-throughput probing data. Here, we test the suitability of high-throughput DMS-probing data and positions of known tRNA modifications as constraints for secondary structure predictions of Saccharomyces cerevisiae tRNAs. Our results suggest that the employment of high-throughput DMS data only slightly increases the quality of predictions. In contrast, the incorporation of known positions of modified bases as knowledge-based constraints outperforms both, unconstrained and DMS-constrained predictions. This study provides an overview of the utility of different sources of constraints for a small RNA folding.
REFERENCES (22)
1.
Agris P.F., Vendeix F.A., Graham W.D. (2007) tRNA’s wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 366: 1-13.
 
2.
Anderson J., Phan L., Cuesta R., Carlson B.A., Pak M., Asano K., Björk G.R., Tamame M., Hinnebusch A.G. (1998) The essential Gcd10p–Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev. 12: 3650-3662.
 
3.
Barash Y., Calarco J.A., Gao W., Pan Q., Wang X., Shai O., Blencowe B.J., Frey B.J. (2010) Deciphering the splicing code. Nature 465: 53-59.
 
4.
Brunel C., Romby P. (2000) Probing RNA structure and RNAligand complexes with chemical probes. Meth. Enzymol. 318: 3-21.
 
5.
Ding Y., Tang Y., Kwok C.K., Zhang Y., Bevilacqua P.C., Assmann S.M. (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505: 696-700.
 
6.
Goodarzi H., Zhang S., Buss C.G., Fish L., Tavazoie S., Tavazoie S.F. (2014) Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins. Nature 513: 256-260.
 
7.
Holley R.W., Apgar J., Everett G.A., Madison J.T., Marquisee M., Merrill S.H., Penswick J.R., Zamir A. (1965) Structure of a ribonucleic acid. Science 147: 1462-1465.
 
8.
Kadaba S., Krueger A., Trice T., Krecic A.M., Hinnebusch A.G., Anderson J. (2004) Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev. 18: 1227-1240.
 
9.
Kim S., Suddath F., Quigley G., McPherson A., Sussman J., Wang A., Seeman N., Rich A. (1974) Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185: 435-440.
 
10.
Kertesz M., Wan Y., Mazor E., Rinn J.L., Nutter R.C., Chang H.Y., Segal E. (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467: 103-107.
 
11.
Langmead B., Trapnell C., Pop M., Salzberg S.L. (2009) Ultrafast and memory – efficient alignment of short DNA sequences to the human genome. Genome Biol. 10: R25.
 
12.
Machnicka M.A., Milanowska K., Osman Oglu O., Purta E., Kurkowska M., Olchowik A., Januszewski W., Kalinowski S., Dunin-Horkawicz S., Rother K.M., et al. (2013) MODOMICS: a database of RNA modification pathways: 2012 update. Nucl. Acids Res. 41: D262-D267.
 
13.
Mathews D.H., Disney M.D., Childs J.L., Schroeder S.J., Zuker M., Turner D.H. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101: 7287-7292.
 
14.
Martin M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17: 10-12.
 
15.
Motorin Y., Helm M. (2010) tRNA stabilization by modified nucleotides. Biochemistry 49: 4934-4944.
 
16.
Phizicky E.M., Hopper A.K. (2010) tRNA biology charges to the front. Genes Dev. 24: 1832-1860.
 
17.
Robertus J., Ladner J.E., Finch J., Rhodes D., Brown R., Clark B., Klug A. (1974) Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250: 546-551.
 
18.
Rouskin S., Zubradt M., Washietl S., Kellis M., Weissman J.S. (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505: 701-705.
 
19.
Reuter S., Mathews D.H. (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform. 11: 129.
 
20.
Sprinzl M., Vassilenko K.S. (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nucl. Acids Res. 33: D139-D140.
 
21.
Talkish J., May G., Lin Y., Woolford J.L. Jr, McManus C.J. (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20: 713-720.
 
22.
Tijerina P., Mohr S., Russell R. (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat. Protoc. 2: 2608-2623.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top