REVIEW PAPER
Amino acid mineralization by Serratia marcescens
 
More details
Hide details
 
Publication date: 2014-10-23
 
 
BioTechnologia 2013;94(3):269-274
 
KEYWORDS
ABSTRACT
The influence of different cultivation conditions (medium, pH values, temperatures of the process, air access) on
the ability of amino acid mineralization via oxidative deamination by Serratia marcescens (facultative anaerobic
bacterial strain) was examined. Among 11 tested substrates – amino acids serine and proline, of both optical configurations,
were chosen as model substrates for the determination of the acceptable range of the value of external
factors influencing the mineralization process. Both pH and oxygen access were found to be limiting factors.
While the acidic pH switched off the mineralization, restricted aeration significantly reduced the effectiveness
of the process, extending the time for its completion.
REFERENCES (22)
1.

Braun M., Kim J.-M., Schmid R.D. (1992) Purification and some properties of an extracellular L-amino acid oxidase from Cellulomonas cellulans AM8 isolated from soil. Appl. Microbiol. Biotechnol. 37: 594-598.
 
2.

Brodelius P., Nilsson K., Mosbach K. (1981) Production of α-keto acids Part I. Immobilized cells of Trigonopsis variabilis containing D-amino acid oxidase. Appl. Biochem. Biotechnol. 6: 293-308.
 
3.

Duerre J.A., Chakrabarty S. (1975) L-amino acid oxidases of Proteus rettgeri. J. Bacteriol. 121: 656-663.
 
4.

El-Sayed A.S., Shindia A.A., Zaher Y. (2012) L-amino acid oxidase from filamentous fungi: screening and optimization. Ann. Microbiol. 62: 773-784.
 
5.

Gabler M., Fischer L. (1999) Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum. Appl. Environ. Microbiol. 65: 3750-3753.
 
6.

Geueke B., Weckbecker A., Hummel W. (2007) Overproduction and characterization of a recombinant D-amino acid oxidase from Arthrobacter protophormiae. Appl. Microbiol. Biotechnol. 74: 1240-1247. Geueke B., Hummel W. (2002) A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization. Enzyme. Microb. Technol. 31: 77-87.
 
7.

Harris C.M., Pollegioni L., Ghisla S. (2001) pH and kinetic isotope effects in D-amino acid oxidase catalysis. Evidence for a concerted mechanism in substrate dehydrogenation via hydride transfer. Eur. J. Biochem. 268: 5504-5520.
 
8.

Khoronenkova S.V., Tishkov V.I. (2008) D-amino acid oxidase: physiological role and applications. Biochemistry (Moscow) 73: 1511-1518.
 
9.

Kleiner D. (1985) Bacterial ammonium transport. FEMS Microbiol. Lett. 32: 87-100.
 
10.
Molla G., Motteran L., Piubelli L., Pilone M.S., Pollegioni L. (2003) Regulation of D-amino acid oxidase expression in the yeast Rhodotorula gracilis. Yeast 20: 1061-1069.
 
11.

Nojoumi S.A., Smith D.G., Rowbury R.J. (1995) Tolerance to acid in pH 5.0-grown organisms of potentially pathogenic Gram-negative bacteria. Lett. Appl. Microbiol. 21: 359- 363.
 
12.

Palenik B., Morel F.M.M. (1990) Amino acid utilization by marine phytoplankton: a novel mechanism. Limnol. Oceanogr. 35: 260-269.
 
13.

Pilone M.S. (2000) D-amino acid oxidase: new findings. Cell Mol. Life Sci. 57: 1732-1747.
 
14.

Pilone M.S., Verga R., Fretta A., Hanozet G.M. (1989) Induction of D-amino acid oxidase by D-alanine in Rhodotorula gracilis grown in defined medium. J. Gen. Microbiol. 135: 593-600. Pollegioni L., Molla G., Sachi S., Rosini E., Vega R., Pilone M.S. (2008) Properties and application of microbial D-amino acid oxidases: current state and perspective. Appl. Microbiol. Biotechnol. 78: 1-16.
 
15.

Pollegioni L., Piubelli L., Sacchi S., Pilone M.S., Molla G. (2007) Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol. Life Sci. 64: 1373-1394.
 
16.

Raunio R.P., Jenkins W.T. (1973) D-alanine oxidase from Escherichia coli: localization and induction by L-alanine. J. Bacteriol. 115: 560-566.
 
17.

Saleem A., Moharram A.M., Fathy N. (2012) Production and optimization of D-amino acid oxidase which is involved in the biosynthesis of $-lactam antibiotics. Afr. J. Microbiol. 6: 4365-4376.
 
18.

Tan N.-H., Fung S.-Y. (2008) Snake venom L-amino acid oxidases and their potential biomedical applications. Malaysian J. Biochem. Mol. Biol. 16: 1-10.
 
19.
Tan Q., Sog Q., Wei D. (2006) Single-pot conversion of cephalosporin C to 7-aminocephalosporanic acid using cellbound and support-bound enzymes. Enzyme Microb. Technol. 39: 1166-1172.
 
20.

Tishkov V.I., Khoronenkova S.V. (2005) D-amino acid oxidase: structure, catalytic mechanism and practical application. Biochemistry (Moscow) 70: 40-51.
 
21.

Trost E.M., Fischer L. (2002) Minimization of by-product formation during D-amino acid oxidase catalyzed racemate resolution of D/L-amino acids. J. Mol. Catal. B Enzym 19-20: 189-195.
 
22.

Wcisło M., Compagnone D., Trojanowicz M. (2007) Enantioselective screen – printed amperometric biosensor for the detection of D-amino acids. Bioelectrochem 71: 91-98.
Williamson N.R., Simonsen H.T., Ahmed R.A.A., Goldet G., Slater H., Woodley L., Leeper F.J., Salmond G.P.C. (2005) Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amylpyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol. Microbiol. 56: 971-989.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top