RESEARCH PAPER
In silico and In vitro cytotoxic effect of prodigiosin-conjugated silver nanoparticles on liver cancer cells (HepG2)
 
More details
Hide details
1
Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
 
2
Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
 
3
Bioinformatics Center, Faculty of Science, Helwan University, Cairo, Egypt
 
4
Nanotechnology Center, Helwan University, Cairo, Egypt
 
 
Submission date: 2017-03-17
 
 
Final revision date: 2017-06-29
 
 
Acceptance date: 2017-07-25
 
 
Publication date: 2018-01-02
 
 
BioTechnologia 2017;98(3):225-243
 
KEYWORDS
TOPICS
ABSTRACT
This study demonstrates a novel approach for the synthesis of silver nanoparticles (AgNPs) against human liver cancer cell line (HepG2) using prodigiosin pigment isolated from Serratia marcescens. It further investigates the influence of various parameters such as initial pH, temperature, silver nitrate (AgNO3) concentration, and prodigiosin concentration on stability and optical properties of synthesized prodigiosin AgNPs. Highly stable, spherical prodigiosin-conjugated AgNPs were synthesized with a mean diameter of 9.98 nm using a rapid one-step method. The cytotoxic activity investigated in the present study indicated that prodigiosin and prodigiosin-conjugated AgNPs possessed a strong cytotoxic potency against human liver cancer. The In silico molecular docking results of prodigiosin and prodigiosin-conjugated AgNPs are congruent with the In vitro studies and these AgNPs can be considered as good inhibitors of mitogen-activated protein kinase 1 (MEK kinases). The study opened the possibility of using prodigiosin-conjugated AgNPs to increase the efficiency of liver cancer treatment.
REFERENCES (129)
1.
Abdel-Mohsen A.M., Abdel-Rahman R.M., Fouda M.M.G., Vojtova L., Uhrova L., Hassan A.F., Al-Deyab S.S., El- Shamy I.E., Jancar J. (2014) Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite. Carbohydr. Polym. 102: 238-245.
 
2.
Abdel-Mohsen A.M., Abdel-Rahman R.M., Hrdina R., Imramovský A., Burgert L., Aly A.S. (2012) Antibacterial cotton fabrics treated with core-shell nanoparticles. Int. J. Biol. Macromol. 50: 1245-1253.
 
3.
Adelere I.A., Lateef A. (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol. Rev. 5: 567- 587.
 
4.
Allen G.R., Reichelt J.L., Gray P.P. (1983) Influence of environmental factors and medium composition on Vibrio gazogenes growth and prodigiosin production. Appl. Environ. Microbiol. 45: 1727-1732.
 
5.
Anderson R.J., Bendell D.J., Groundwater P.W. (2004) Organic spectroscopic analysis. Royal Society of Chemistry, Cambridge.
 
6.
Annadhasan M., Muthukumarasamyvel T., Sankar Babu V.R., Rajendiran N. (2014) Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustain Chem. Eng. 2: 887-896.
 
7.
Apte M., Sambre D., Gaikawad S., Joshi S., Bankar A., Kumar A., Zinjarde S. (2013) Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3: 32.
 
8.
Ashokkumar T., Prabhu D., Geetha R., Govindaraju K., Manikandan R., Arulvasu C., Singaravelu G. (2014) Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles. Colloid. Surface. B 123: 549-556.
 
9.
Aslan K., Lakowicz J.R., Geddes C.D. (2005) Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. J. Phys. Chem. B 109: 6247-6251.
 
10.
Azeez M.A., Lateef A., Asafa T.B., Yekeen T.A., Akinboro A., Oladipo I.C., Gueguim-Kana E.B., Beukes L.S. (2017) Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. J. Clust. Sci. 28: 149-164.
 
11.
Bhattacharya D., Gupta R.K. (2005) Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 25: 199-204.
 
12.
Boger D.L., Patel M. (1988) Total synthesis of prodigiosin, prodigiosene, and desmethoxyprodigiosin: Diels-Alder reactions of heterocyclic azadienes and development of an effective palladium (II)-promoted 2, 2N-bipyrrole coupling procedure. J. Org. Chem. 53: 1405-1415.
 
13.
Bunting M.I. (1940) A description of some color variants produced by Serratia marcescens, strain 274. J. Bacteriol. 40: 57.
 
14.
Campàs C., Dalmau M., Montaner B., Barragán M., Bellosillo B., Colomer D., Pons G., Pérez-Tomás R., Gil J. (2003) Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia. Leukemia 17: 746-750.
 
15.
Castell J.V., Jover R., Martínez-Jiménez C.P., Gómez-Lechón M.J. (2006) Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opin. Drug Metab. Toxicol. 2: 183-212.
 
16.
Castro A.J., Corwin A.H., Waxham F.J., Beilby A.L. (1959) Products from Serratia marcescens1, 2. J. Org. Chem. 24: 455-459.
 
17.
Casullo de Araújo H.W., Fukushima K., Takaki G.M.C. (2010) Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules 15: 6931-6940.
 
18.
Cerdeño A.M., Bibb M.J., Challis G.L. (2001) Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): New mechanisms for chain initiation and termination in modular multienzymes. Chem. Biol. 8: 817-829.
 
19.
Chang T.M., Sinharay S., Astashkin A.V., Tomat E. (2014) Prodigiosin analogue designed for metal coordination: stable zinc and copper pyrrolyldipyrrins. Inorg. Chem. 53: 7518-7526.
 
20.
Chen D., Han Y., Gu Z. (2006) Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochem. 41: 1773-1778.
 
21.
Chlebowski R.T., Brzechwa-Adjukiewicz A., Cowden A., Block J.B., Tong M., Chan K.K. (1984) Doxorubicin (75 mg/m2) for hepatocellular carcinoma: clinical and pharmacokinetic results. Cancer Treat. Rep. 68: 487-491.
 
22.
Choi J., Yip-Schneider M., Albertin F., Wiesenauer C., Wang Y., Schmidt C.M. (2008) The Effect of Doxorubicin on MEK-ERK Signaling Predicts Its Efficacy in HCC. J. Surg. Res. 150: 219-226.
 
23.
D’Aoust J.Y., Gerber N.N. (1974) Isolation and purification of prodigiosin from Vibrio psychroerythrus. J. Bacteriol. 118: 756-757.
 
24.
Da Silva Melo P., Durán N., Haun M. (2000) Cytotoxicity of prodigiosin and benznidazole on V79 cells. Toxicol. Lett. 116: 237-242.
 
25.
Das M.R., Sarma R.K., Saikia R., Kale V.S., Shelke M.V., Sengupta P. (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloid. Surface. B 83: 16-22.
 
26.
Díaz-Ruiz C., Montaner B., Pérez-Tomás R. (2001) Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1. Histol. Histopathol. 16: 415-421.
 
27.
Duane M.M., Robert C., Reynolds J. (1997) X-ray diffraction and the identification and analysis of clay minerals, 2ed edn. Oxford Press, London.
 
28.
Dubey S.P., Lahtinen M., Sillanpää M. (2010) Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloid. Surface. A 364: 34-41.
 
29.
Durán N., Marcato P.D., De Souza G.I.H., Alves O.L., Esposito E. (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3: 203-208.
 
30.
El-Batal A.I., Amin M.A., Shehata M.M.K., Hallol M.M.A. (2013) Synthesis of silver nanoparticles by Bacillus stearothermophilus using gamma radiation and their antimicrobial activity. World Appl. Sci. J. 22: 1-16.
 
31.
El-Batal A.I., Haroun B.M., Farrag A.A., Baraka A., El-Sayyad G.S. (2014) Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation. Br. J. Pharm. Res. 4: 1341.
 
32.
El Baz A.F., El Batal A.I., Abomosalam F.M., Tayel A.A., Shetaia Y.M., Yang S. (2015) Extracellular biosynthesis of anti Candida silver nanoparticles using Monascus purpureus. J. Basic Microbiol. 56: 531-540.
 
33.
Faraag A.H., El-Batal A.I., El-Hendawy H.H. (2017) Characterization of prodigiosin produced by Serratia marcescens strain isolated from irrigation water in Egypt. Nat. Sci. 15: 55-68.
 
34.
Fayaz A.M., Balaji K., Girilal M., Yadav R., Kalaichelvan P.T., Venketesan R. (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6(1): 103-109.
 
35.
Friedman M.A. (1983) Primary hepatocellular cancer—present results and future prospects. Int. J. Radiat. Oncol. Biol. Phys. 9: 1841-1850.
 
36.
Fullan N.P., Lynch D.L., Ostrow D.H. (1977) Effects of bacterial extracts on Chinese-Hamster cells and Rat Neoplasms. Microbios. Lett. 5: 157-161.
 
37.
Gade A.K., Bonde P., Ingle A.P., Marcato P.D., Durán N., Rai M.K. (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J. Biobased Mater. Bioenergy. 2: 5.
 
38.
Ganesh Babu M.M., Gunasekaran P. (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloid. Surface. B 74: 191-195.
 
39.
Ganesh Babu M.M., Gunasekaran P. (2013) Extracellular synthesis of crystalline silver nanoparticles and its characterization. Mater Lett. 90: 162-164.
 
40.
Garg R., Namazkar S., Ahmad W.Z., Nordin N. (2013) Production and characterization of crude and encapsulated prodigiosin pigment. Int. J. Chem. Sci. Appl. 4: 116-129.
 
41.
Gargallo-Viola D. (1989) Enzyme polymorphism, prodigiosin production, and plasmid fingerprints in clinical and naturally occurring isolates of Serratia marcescens. J. Clin. Microbiol. 27: 860-868.
 
42.
Gerber N.N. (1975) Prodigiosin-like pigments. CRC Crit. Rev. Microbiol. 3: 469-485.
 
43.
Gerber N.N., Gauthier M.J. (1979) New prodigiosin-like pigment from Alteromonas rubra. Appl. Environ. Microbiol. 37: 1176-1179.
 
44.
Gerber N.N., Stahly D.P. (1975) Prodiginine (prodigiosin-like) pigments from Streptoverticillium rubrireticuli, an organism that causes pink staining of polyvinyl chloride. Appl. Microbiol. 30: 807-810.
 
45.
Gong P., Li H., He X., Wang K., Hu J., Tan W., Zhang S., Yang X. (2007) Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology 18: 285604.
 
46.
Guo Q., Guo Q., Yuan J., Zeng J. (2014) Biosynthesis of gold nanoparticles using a kind of flavonol: dihydromyricetin. Colloid. Surface. A 441: 127-132.
 
47.
Gurunathan S., Kalishwaralal K., Vaidyanathan R., Venkataraman D., Pandian S.R.K., Muniyandi J., Hariharan N., Eom S.H. (2009a) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloid. Surface. B 74: 328-335.
 
48.
Gurunathan S., Lee K.-J., Kalishwaralal K., Sheikpranbabu S., Vaidyanathan R., Eom S.H. (2009b) Antiangiogenic properties of silver nanoparticles. Biomaterials 30: 6341-6350.
 
49.
Hanawalt J.D., Rinn H.W., Frevel L.K. (1938) Chemical analysis by X-ray diffraction. Ind. Eng. Chem. Anal. Ed. 10: 457-512.
 
50.
Hannun Y.A. (1997) Apoptosis and the dilemma of cancer chemotherapy. Blood 89: 1845-1853.
 
51.
Harris A.K.P., Williamson N.R., Slater H., Cox A., Abbasi S., Foulds I., Simonsen H.T., Leeper F.J., Salmond G.P.C. (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and straindependent genome context variation. Microbiology 150: 3547-3560.
 
52.
Hassankhani R., Sam M.R., Esmaeilou M., Ahangar P. (2015) Prodigiosin isolated from cell wall of Serratia marcescens alters expression of apoptosis-related genes and increases apoptosis in colorectal cancer cells. Med. Oncol. 32: 1-8.
 
53.
Hatzivassiliou G., Haling J.R., Chen H., Song K., Price S., Heald R., Hewitt J.F.M., Zak M., Peck A., Orr C., Merchant M., Hoeflich K.P., Chan J., Luoh S.-M., Anderson D.J., Ludlam M.J.C., Wiesmann C., Ultsch M., Friedman L.S., Malek S., Belvin M. (2013) Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501: 232-236.
 
54.
Heard S.M., Grieser F., Barraclough C.G., Sanders J.V. (1983) The characterization of ag sols by electron microscopy, optical absorption, and electrophoresis. J. Colloid Interface Sci. 93: 545-555.
 
55.
Hesse M., Meier H., Zeeh B., Dunmur R., Murray M. (2008) Spectroscopic methods in organic chemistry. Thieme Stuttgart.
 
56.
Huang T., Xu X.-H.N. (2010) Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J. Mater. Chem. 20: 9867.
 
57.
Hubbard R., Rimington C. (1950) The biosynthesis of prodigiosin, the tripyrrylmethene pigment from Bacillus prodigiosus (Serratia marcescens). Biochem. J. 46(2): 220.
 
58.
Huh J.E., Yim J.H., Lee H.K., Moon E.Y., Rhee D.K., Pyo S. (2007) Prodigiosin isolated from Hahella chejuensis suppresses lipopolysaccharide-induced NO production by inhibiting p38 MAPK, JNK and NF-6B activation in murine peritoneal macrophages. Int. Immunopharmacol. 7: 1825- 1833.
 
59.
Hyllested J.A.E., Palanco M.E., Hagen N., Mogensen K.B., Kneipp K. (2015) Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents. Beilstein J. Nanotechnol. 6: 293- 299.
 
60.
Jiang H., Moon K.-S., Zhang Z., Pothukuchi S., Wong C.P. (2008) Variable Frequency Microwave Synthesis of Silver Nanoparticles. J. Nanoparticle Res. 8: 117-124.
 
61.
Johnston H.L., Cuta F., Garrett A.B. (1933) The solubility of silver oxide in water, in alkali and in alkaline salt solutions. The amphoteric character of silver hydroxide. J. Am. Chem. Soc. 55: 2311-2325.
 
62.
Katok K., Tertykh V., Yanishpolskii V. (2009) Synthesis and characterization of silver/silica nanostructures. Nanostructured Materials for Advanced Technological Applications, p. 207-210.
 
63.
Kavitha R., Aiswariya S., Ratnavali C.M.G. (2010) Anticancer activity of red pigment from Serratia marcescens in human cervix carcinoma. Int. J. PharmTech. Res. 2: 784-787.
 
64.
Kawasaki T., Sakurai F., Hayakawa Y. (2008) A prodigiosin from the roseophilin producer Streptomyces griseoviridis. J. Nat. Prod. 71: 1265-1267.
 
65.
Kerker M. (1985) The optics of colloidal silver: something old and something new. J. Colloid Interface Sci. 105: 297-314.
 
66.
Khanafari A., Assadi M.M., Fakhr F.A. (2006) Review of Prodigiosin, Pigmentation in Serratia marcescens. Online J. Biol. Sci. 6: 1-13.
 
67.
Kim D., Kim J.F., Yim J.H., Kwon S.-K., Lee C.H., Lee H.K. (2008) Red to red-the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J. Microbiol. Biotechnol. 1621-1629.
 
68.
Knasmüller S., Parzefall W., Sanyal R., Ecker S., Schwab C., Uhl M., Mersch-Sundermann V., Williamson G., Hietsch G., Langer T., Darroudi F., Natarajan A.T. (1998) Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat. Res. – Fundam. Mol. Mech. Mutagen 402: 185-202.
 
69.
Knoll B., Keilmann F. (1999) Near-field probing of vibrational absorption for chemical microscopy. Nature 399: 7-10.
 
70.
Kohler J.M., Fritzsche W. (2004) Nanotechnology: an introduction to nanostructuring techniques. Wiley-VCH, Weinheim.
 
71.
Kreibig U., Vollmer M. (1995) Optical Properties of Metal Clusters. Springer.
 
72.
Lai C., Lok A.S., Wu P., Chan G.C., Lin H. (1988) Doxorubicin versus no antitumor therapy in inoperable hepatocellular carcinoma. A prospective randomized trial. Cancer 62: 479-483.
 
73.
Lateef A., Akande M.A., Azeez M.A., Ojo S.A., Folarin B.I., Gueguim-Kana E.B., Beukes L.S. (2016a) Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (Synsepalum dulcificum) for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. Nanotechnol. Rev. 5: 507-520.
 
74.
Lateef A., Akande M.A., Ojo S.A., Folarin B.I., Gueguim-Kana E.B., Beukes L.S. (2016b) Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. 3 Biotech. 6: 1-10.
 
75.
Lateef A., Ojo S.A., Elegbede J.A., Azeez M.A., Yekeen T.A., Akinboro A. (2017) Evaluation of some biosynthesized silver nanoparticles for biomedical applications: hydrogen peroxide scavenging, anticoagulant and thrombolytic activities. J. Clust. Sci. 28: 1379-1392.
 
76.
Lee M.-H., Kataoka T., Magae J., Nagai K. (1995) Immunomodulation of prodigiosin 25-C and concanamycin B. [in:] Animal cell technology: developments towards the 21st century SE – 162. Eds. Beuvery E.C., Griffiths J.B., Zeijlemaker W.P. Springer Netherlands, p. 1025-1029.
 
77.
Lee T., Lau T., Ng I. (2002) Doxorubicin-induced apoptosis and chemosensitivity in hepatoma cell lines. Cancer Chemother. Pharmacol. 49: 78-86.
 
78.
Li X., Xu H., Chen Z.S., Chen G. (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. http://dx.doi.org/10.1155/2011....
 
79.
Lin D., Lin S., Liaw Y. (1997) Non surgical treatment of hepatocellular carcinoma. J. Gastroenterol. Hepatol. 12: 319- S328.
 
80.
Llagostera E., Soto-Cerrato V., Joshi R., Montaner B., Gimenez- Bonafé P., Pérez-Tomás R. (2005) High cytotoxic sensitivity of the human small cell lung doxorubicin-resistant carcinoma (GLC4/ADR) cell line to prodigiosin through apoptosis activation. Anticancer Drugs 16(4): 393-399.
 
81.
Manikprabhu D., Lingappa K. (2013a) Microwave assisted rapid bio-based synthesis of gold nanorods using pigment produced by Streptomyces coelicolor klmp33. Acta Met. Sin. (Engl Lett) 26: 613-617.
 
82.
Manikprabhu D., Lingappa K. (2013b) Antibacterial activity of silver nanoparticles against methicillin-resistant staphylococcus aureus synthesized using model streptomyces sp. pigment by photo-irradiation method. J. Pharm. Res. 6: 255-260.
 
83.
Manikprabhu D., Lingappa K. (2014) Synthesis of silver nanoparticles using the Streptomyces coelicolor klmp33 pigment: An antimicrobial agent against extended-spectrum beta-lactamase (ESBL) producing Escherichia coli. Mater Sci. Eng. C 45: 434-437.
 
84.
Maria B.S., Devadiga A., Kodialbail V.S., Saidutta M.B. (2014) Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Appl. Nanosci. 5: 755-762.
 
85.
Maurice M. (2002) Bacterial pigments. Microbiologist 3: 10-12. Menges F. (2011) Spekwin32, Complete Documentation. p. 1-19.
 
86.
Montaner B., Navarro S., Piqué M., Vilaseca M., Martinell M.,Giralt E., Gil J., Pérez Tomás R., Pérez-Tomás R. (2000) Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br. J. Pharmacol. 131: 585-593.
 
87.
Montaner B., Perez-Tomas R. (2001) Prodigiosin-induced apoptosis in human colon cancer cells. Life Sci 68: 2025-2036.
 
88.
Montaner B., Pérez-Tomás R. (2002) The cytotoxic prodigiosin induces phosphorylation of p38-MAPK but not of SAPK/JNK. Toxicol. Lett. 129: 93-98.
 
89.
Mukherjee P., Roy M., Mandal B.P., Dey G.K., Mukherjee P.K., Ghatak J., Tyagi A.K., Kale S.P. (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19: 75103.
 
90.
Mulvaney P. (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12: 788-800.
 
91.
Muthukrishnan L., Nanda A. (2013) Geno-toxic study of silver bio-nanoparticles toward Gram-positive and Gram-negative clinical isolates. J. Pharm. Res. 6: 725-729.
 
92.
Nair V., Sambre D., Joshi S., Bankar A., Ravi Kumar A., Zinjarde S. (2013) Yeast-derived melanin mediated synthesis of gold nanoparticles. J. Bionanoscience 7: 159-168.
 
93.
Narayanan K.B., Sakthivel N. (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci. 169: 59-79.
 
94.
Ojo S.A., Lateef A., Azeez M.A., Oladejo S.M., Akinwale A.S., Asafa T.B., Yekeen T.A., Akinboro A., Oladipo I.C., Gueguim- Kana E.B., Beukes L.S. (2016) Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans. Nanobiosci. 15: 433-442.
 
95.
Pan M.-Y., Shen Y.-C., Lu C.-H., Yang S.-Y., Ho T.-F., Peng Y.- T., Chang C.-C. (2012) Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines. Toxicol. Appl. Pharmacol. 265(3): 325-334.
 
96.
Pandey R., Chander R., Sainis K.B. (2007) Prodigiosins: a novel family of immunosuppressants with anti-cancer activity. Indian J. Biochem. Biophys. 44: 295.
 
97.
Park G., Tomlinson J.T., Melvin M.S., Wright M.W., Day C.S., Manderville R.A. (2003) Zinc and copper complexes of prodigiosin: implications for copper-mediated doublestrand DNA cleavage. Org. Lett. 5: 113-116.
 
98.
Poole C.P., Owens F.J. (2003) Introduction to nanotechnology. Collect. Manag. 21: 1-2.
 
99.
Pradeep B.V., Pradeep F.S., Angayarkanni J., Palaniswamy M. (2013) Optimization and production of prodigiosin from Serratia marcescens MBB05 using various natural substrates. Asian J. Pharm. Clin. Res. 6: 34-41.
 
100.
Qiu G.-H., Xie X., Xu F., Shi X., Wang Y., Deng L. (2015) Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology 67: 1-12. doi: 10.1007/s10616-014-9761-9.
 
101.
Ramezani N., Ehsanfar Z., Shamsa F., Amin G., Shahverdi H.R., Esfahani H.R.M., Shamsaie A., Bazaz R.D., Shahverdi A.R. (2008) Screening of medicinal plant methanol extracts for the synthesis of gold nanoparticles by their reducing potential. Z. Naturforsch B 63: 903-908.
 
102.
Rapoport H., Holden K.G. (1962) The synthesis of prodigiosin. J. Am. Chem. Soc. 84: 635-642.
 
103.
Rokem J.S., Weitzman P. (1987) Prodigiosin formation by Serratia marcescens in a chemostat. Enzyme Microb. Technol. 9: 153-155.
 
104.
Rubilar O., Rai M., Tortella G., Diez M.C., Seabra A.B., Durán N. (2013) Biogenic nanoparticles: Copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol. Lett. 35: 1365-1375.
 
105.
Samrot A.V., Chandana K., Senthilkumar P. (2011) Optimization of prodigiosin production by Serratia marcescens SU-10 and evaluation of its bioactivity Optimization of prodigiosin production by Serratia marcescens SU-10 and evaluation of its bioactivity. Int. Res. J. Biotechnol. 2: 128-133.
 
106.
Sastry M., Ahmad A., Islam Khan M., Kumar R. (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85: 162-170.
 
107.
Shankar S.S., Rai A., Ahmad A., Sastry M. (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275: 496-502.
 
108.
Siegel R., Naishadham D., Jemal A. (2013) Cancer statistics, 2013. CA Cancer J. Clin. 63: 11-30.
 
109.
Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D., Warren J.T., Bokesch H., Kenney S., Boyd M.R. (1990) New colorimetric cytotoxicity assay for anticancer- drug screening. J. Natl Cancer Inst. 82: 1107-1112.
 
110.
Slater H., Crow M., Everson L., Salmond G.P.C. (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum sensing dependent and independent pathways. Mol. Microbiol. 47: 303-320.
 
111.
Sönnichsen C., Franzl T., Wilk T., Von Plessen G., Feldmann J. (2002) Plasmon resonances in large noble-metal clusters. New J. Phys. 4: 93.
 
112.
Suber L., Sondi I., Matijević E., Goia D.V. (2005) Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions. J. Colloid Interface Sci. 288: 489-495.
 
113.
Thakkar K.N., Mhatre S.S., Parikh R.Y. (2010) Biological synthesis of metallic nanoparticles. Nanomedicine Nanotechnology Biol. Med. 6: 257-262.
 
114.
Thomsen R., Christensen M.H. (2006) MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49: 3315-3321.
 
115.
Venil C.K. (2009) An insightful overview on microbial pigment, prodigiosin. Electr. J. Biol. 5(3): 49-61.
 
116.
Wang D., Boerner S.A., Winkler J.D., LoRusso P.M. (2007) Clinical experience of MEK inhibitors in cancer therapy. Biochim. Biophys. Acta 1773: 1248-1255.
 
117.
Wang Z., Liu J., Chen X., Wan J., Qian Y. (2004) A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chemistry 11: 160-163.
 
118.
Wasserman H.H., Rodgers G.C., Keith D.D. (1969) Metacycloprodigiosin, a tripyrrole pigment from Streptomyces longisporus ruber. J. Am. Chem. Soc. 91: 1263-1264.
 
119.
Weiss C.M. (1949) Spectrophotometric and chromatographic analyses of the pigment produced by members of the genus serratia. J. Cell Comp. Physiol. 34: 467-492.
 
120.
Williams R.P. (1973) Biosynthesis of prodigiosin, a secondary metabolite of Serratia marcescens. Appl. Microbiol. 25: 396-402.
 
121.
Williams R.P., Gott C.L., Green J.A. (1961) Studies on pigmentation of Serratia marcescens V: accumulation of pigment fractions with respect to length of incubation time1. J. Bacteriol. 81: 376.
 
122.
Williams R.P., Gott C.L., Qadri S.M., Scott R.H. (1971) Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens. J. Bacteriol. 106: 438-443.
 
123.
Williams R.P., Green J.A., Rappo-Port D.A. (1956) Studies on pigmentation of Serratia marcescens. I. Spectral and paper chromatographic properties of prodigiosin. J. Bacteriol. 71: 115-120.
 
124.
Wolber G., Langer T. (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model 45: 160-169.
 
125.
Xia Y., Halas N.J. (2011) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30: 338-348. doi: 10.1557/mrs2005.96.
 
126.
Xu F., Xia S., Yang Q. (2011) Strategy for obtaining inexpensive prodigiosin production by Serratia marcescens. [in:] 3rd International Conference on Chemical, Biological and Environmental Engineering, p. 32-36.
 
127.
Yamamoto C., Takemoto H., Kuno K., Yamamoto D., Tsubura A., Kamata K., Hirata H., Yamamoto A., Kano H., Seki T., Inoue K. (1999) Cycloprodigiosin hydrochloride, a new H(+)/Cl(-) symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice. Hepatology 30: 894-902. doi: 10.1002/hep. 510300417.
 
128.
Yang T., Lin Y., Chen J., Wang H., Wang C. (2000) Phase II study of gemcitabine in patients with advanced hepatocellular carcinoma. Cancer 89: 750-756.
 
129.
Zaki S., Elkady M.F., Farag S., Abd-El-Haleem D. (2012) Determination of the effective origin source for nanosilver particles produced by Escherichia coli strain S78 and its application as antimicrobial agent. Mater Res. Bull. 47: 4286-4290.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top