RESEARCH PAPER
Optimizing biomethanation of a lignocellulosic biomass using indigenous microbial-cellulases systems
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
Department of Microbiology, Federal University of Technology, Owerri, Nigeria
 
2
Department of Chemistry, Federal University of Technology, Owerri, Nigeria
 
 
Submission date: 2017-03-03
 
 
Final revision date: 2017-06-29
 
 
Acceptance date: 2017-07-24
 
 
Publication date: 2018-01-02
 
 
BioTechnologia 2017;98(3):245-255
 
KEYWORDS
TOPICS
ABSTRACT
Studies on enhancing biomethanation were performed to ascertain whether amending lignocellulosic biomass waste with indigenous microbial-cellulases systems will improve biomethane output. To evaluate this, gastrointestinal contents of slaughtered beef cattle were treated with inocula derived from the guts of giant African land snail (Archachatina marginata ) and worker termites (Coptotermes formosanus ), individually as well as combined. The fed-batch method operating at prevailing ambient room temperatures (30 ± 2EC) for a hydraulic retention time (HRT) of 60 days was adopted. Feedstock slurry without amendment, amended with Archachatina marginata -derived inoculum, amended with Coptotermes formosanus -derived inoculum, and amended with Archachatina marginata: Coptotermes formosanus (50 : 50%) mixed inocula yielded cumulative biomethane of 65.26 ml/g VS, 63.21 ml/g VS, 125.99 ml/g VS, and 97.16 ml/g VS, respectively. Physicochemical analysis of feedstock and digestates revealed increased reductions in lignin, hemicelluloses, and celluloses (lignocelluloses) in trials amended with microbial-cellulases systems. This study revealed that among the experiments assayed, the trial amended with the cellulases system from Coptotermes formosanus yielded the highest cumulative biomethane.
REFERENCES (43)
1.
Abubakar B., Ismail N. (2012) Anaerobic digestion of cow dung for biogas production. ARPN J. Eng. Appl. Sci. 7(2): 169-172.
 
2.
Abu-Dahrich J., Orozco A., Ahmad M., Rooney D. (2011) The potential of biogas production from grass. [in:] Proceedings of the Jordan International Energy Conference, Amman.
 
3.
Ademolu K.O., Fakeye O.D., Dedeke G.A., Ajayi O.A., Idowu A.B. (2013) Digestive enzymes in African Giant Land Snail (Archachatina marginata) during aestivation. Arch. Zootec. 62(237): 73-77.
 
4.
Ahn H.K., Smith M.C. (2008) Biogas production from switch grass – animal manure mixture using dry anaerobic digestion. An ASABE meeting Presentation, Rhode Island, June 29 – July 2.
 
5.
Akhtar M., Attridge M.C., Blanchette R.A, Myers G.C., Wall M.B., Sykes M.S., Koning J.W., Burgess R.R., Wegner T.H., Kirk T. (1992) Biotechnology in pulp and paper industry. [in:] Proceedings of the 5th International Conference on Biotechnology in the Pulp and Paper Industry. ds. M. Kuwahara, M. Shimada, Tokyo, University Publishers Ltd., p. 3-8.
 
6.
Amaral Collaco M.T. (1981) Producao de S.C.P. a partir de repiso de tomate a bagaco de uva cum Geotrichum candidum. Pre-tratamento e hidrolise enzimatica. [in:] 1o Simposio Nacional NOPROT. Ed. Amaral-Collaco M.T. et al. NOPRAI, Lisboa, p. 194-201.
 
7.
Amaral Collaco M.T. (1984) Protein enrichment of tomato residues for animal feeding. [in:] Proceedings of the Third European Congress on Biotechnology, Vol. II, Dechema, Verlag-Chemie, Munchen, FRG, 563.
 
8.
Amaral Collaco M.T. (1988) Physiological studies on microbial bioconversion of tomato pomace syrups. [in:] Proceedings of the Eight International Biotechnology Symposium, IUPAC, Chirac, Paris, A-21, 21.
 
9.
Angelidaki I., Karakashev D., Batstone D.J., Plugge C.M., Stam A.J. (2011) Biomethanation and its potential methods. Enzymol. 494: 327-351. doi: 10.1016/B978–0-12- 385112-3.00016-0.
 
10.
Blom A., Peterson A., Persson T, Johansson L., Jarlsvik T., Jacoby J., Kjellvander H. (2012) Biogas from lignocellulosic biomass. Swedish Waste Management, Rapport U2012:07 (ISSN 1103-4092).
 
11.
Brun E. (2010) Improved anaerobic digestion of energy crops and agricultural residues. Department of Environmental Engineering , Technical University of Denmark: Lyngby.
 
12.
Budiyono I.N., Syaichhurrozi I., Sumardiono S. (2014) Kinetic model of biogas yield production from vinasse at various pH: comparison between modified Gompertz model and first order kinetic model. Res. J. Appl. Sci. Eng. Tech. 7(13): 2798-2805.
 
13.
Chandler J.A., Jewel W.J. (1980) Predicting methane fermentation degradability. Solar Energy Research Institute, Golden, Colorado.
 
14.
Chen Y., Hashimoto A.G. (1978) Kinetic of methane fermentation. Biotechnol. Bioeng. 8: 269-282.
 
15.
Chum H.L. et al. (1985) Evaluation of pretreatment of biomass for enzymatic hydrolysis of cellulose. Solar Energy Research Institute. Colarodo State University.
 
16.
Coughlan M.P., Collaço M.T.A. (1990) Advancess in biological treatment of ignocellulosic materials. Elsevier Science Publishers Ltd., ISBN 1-85166-542-0.
 
17.
Eziuzor C.S., Okpokwasili G.C. (2009) Bioremediation of hydrocarbon contaminated mangrove soil in a bioreactor. Nigerian J. Microbiol. 23: 1777-1791.
 
18.
Goswami (http://home.eng.iastate.edu/~t...- 521/ShyamGoswami.pdf).
 
19.
Hermsen P.F., Huijgen W.J., Lopez L.M., Bakker R.R. (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Energy Research Center of Netherlands, ECN-E-10-013.
 
20.
Jensen J., Trager W. (1977) Plasmodium falciparum in culture: use of outdated erythrocytes and description of the candle jar method. J. Parasit. 63(5): 883-886. http://dx.doi.org/ 10.2307/3279900.
 
21.
Kalra Y.P.. (1998) Handbook of reference methods for plant analysis. Florida, USA: CRC Press.
 
22.
Komilis D.P., Ham R.K. (2003) The effect of lignin and sugars to the aerobic decomposition of solids. Waste Manag. 23: 419-423.
 
23.
Marchaim U. (1992) Biogas processes for sustainable development. FAO. p. 1-99.
 
24.
Mittal G.S. (2006) Treatment of waste water from abattoirs before land application – a review. Bioresour. Technol. 97(9): 1119-1135.
 
25.
Mckendry P. (2002) Energy production from biomass (part I): overview of biomass. Bioresour. Technol. 83(1): 37-46.
 
26.
Monaghan R.L., Gagliardi M.M., Streicher S.L. (1999) [in:] Manual of Industrial Microbiology and Biotechnology, 2nd ed. Eds. Damien A.L. et al., Washington, D.C: ASM, 34.
 
27.
Monnet F. (2003) An introduction to anaerobic digestion of organic wastes. Final Report (November, 2003), 1-43. Scotland: Remade.
 
28.
Mossier N., Wyman C., Dale B., Elander R., Lee Y., Holtzapple M., Ladisch M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6): 673-686. doi: 10.1016/j.biotech.2004. 06.025.
 
29.
Mussatto S.I., Teixeira J.A. (2010) Lignocelluloses as raw material in fermentation processes. IBB – Institute for Biotechnology and Bioengineering, Center of Biological Engineering, University of Minho.
 
30.
Nda-Umar U.I., Uzowuru M.G. (2011) Anaerobic co-digestion of fruit waste and abattoir effluent. J. Biol. Sci. Bioconserv. 3(1): 26-34.
 
31.
Ngumah C., Ogbulie J., Orji J., Amadi E. (2013a) Potential of organic wastes for biogas and biofertilizer production in Nigeria. Environ. Res. Eng. Manag. 1(63): 60-66.
 
32.
Ngumah C., Ogbulie J., Orji J., Amadi E. (2013b) Effects of initiating anaerobic digestion of layer-hen poultry dung at sub-atmospheric pressure. Ambiente Agua 8(3): 33-42.
 
33.
Nopharatana A.P., Pullammanappallil C.W., Clarke P. (2007) Kinetics and dynamic modeling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Manag. 27: 595-603.
 
34.
Oyeleke S.B., Egwim E.C., Oyewole O.A., John E.E. (2012) Production of cellulose and protease from microorganisms isolated from gut of Archachatina marginata (Giant African Snail). Sci. Technol. 2(1): 15-20. doi: 10.5923/ j.scit.20120201.03.
 
35.
Pillai S. (2009) A comprehensive laboratory manual for environmental science and engineering. New Age International Publishers Ltd. New Delhi, p. 7-11.
 
36.
Sánchez O.J., Cardona C.A. (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99(13): 5270-5295. (doi:10.1016/ j.biotech.2007.11.013).
 
37.
Schnurer A., Jarvis A. (2009) Microbiological handbook for biogas plants. Sweden: Avfall Sverige.
 
38.
Sun Y., Cheng J. (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11.
 
39.
Upadhyaya S.K., Manandhar A., Mainali H., Pokhrel A.R., Rijal A., Pradhan B., Koirala B. (2012) Isolation and characterization of cellulolytic bacteria from gut of termite. Rentech Symposium Compendium 1: 14-18.
 
40.
Uzodinma E.O., Ofoefule A.U., Enwere N.J. (2011) Optimization of biogas fuel production from blending maize bract with biogenic wastes. Amer. J. Food Nutr. 1(1): 1-6.
 
41.
Vernam A.H., Evans M.G. (2000) Environmental microbiology. ASM Press. Washington, D.C., USA.
 
42.
Wankhade N.A., Thakre S.B., Dhote A.V., Wankhade P.S.(2012) Enhancement of biogas from abattoir cow liquor waste with some agro-industrial wastes. Int. J. Eng. Res. Appl. (IJERA) 2(5): 1383-1388.
 
43.
Wong L.J., H’ng P.S., Wong S.Y., Lee S.H., Lum W.C. et al. (2014) Termite digestomes as a potential source of symbiotic microbiota for lignocelluloses degradation: a review.Pakistan J. Biol. Sci. 17(8): 956-963.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top