REVIEW PAPER
Mass spectrometry approaches in proteomic and metabolomic studies
 
More details
Hide details
 
Publication date: 2015-10-06
 
 
BioTechnologia 2014;95(3):192-202
 
ABSTRACT
With the development of the systems biology concept proteomic and metabolomic studies have become even
more attractive. The advancement in separation methods of proteins and metabolites, and particularly the progress
that has been made in the field of mass spectrometry significantly facilitated high-throughput analyses and
substantially increased both quality and quantity of the data. In this short review we discuss some aspects of the
analytical strategies used in proteome and metabolome research in which mass spectrometry plays a crucial role.
REFERENCES (91)
1.
Aebersold R., Mann M. (2003) Mass spectrometry-based proteomics. Nature 422: 198-207.
 
2.
Aggarwal K., Choe L.H., Lee K.H. (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief. Funct. Genomic. Proteomic. 5: 112-120.
 
3.
Agnolet S., Jaroszewski J.W., Verpoorte R., Staerk D. (2010) 1H NMR-based metabolomics combined with HPLC-PDAMS- SPE-NMR for investigation of standardized Ginkgo biloba preparations. Metabolomics 6: 292-302.
 
4.
Armirotti A., Damonte G. (2010) Achievements and perspectives of top-down proteomics. Proteomics 10: 3566-3576.
 
5.
Baker M. (2011) Metabolomics: from small molecules to big ideas. Nat. Meth. 8: 117-121.
 
6.
Berth M., Moser F., Kolbe M., Bernhardt J. (2007) The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl. Microbiol. Biotechnol. 76: 1223-1243.
 
7.
Boyne M.T., Pesavento J.J., Mizzen C.A., Kelleher N.L. (2006) Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J. Proteome Res. 5: 248-253. Catherman A.D., Skinner O.S., Kelleher N.L. (2014) Top Down proteomics: Facts and perspectives. Adv. OMICs- Based Discip. 445: 683-693.
 
8.
Chevallet M., Luche S., Rabilloud T. (2006) Silver staining of proteins in polyacrylamide gels. Nat. Protoc. 1: 1852-1858.
 
9.
Cornett D.S., Reyzer M.L., Chaurand P., Caprioli R.M. (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Meth. 4: 828-833.
 
10.
Coruzzi G.M., Burga A.R., Katari M.S., Gutiérrez R.A. (2009) Systems biology: principles and applications in plant research. In: Plant Systems Biology. Ed. G.M. Coruzzi and R.A. Gutiérrez, Oxford: Wiley-Blackwell: 3-40.
 
11.
Cramer R. (2009) MALDI MS. In: Proteomics. Ed. J. Reinders, A. Sickmann, Humana Press: 85-103.
 
12.
Creese A.J., Cooper H.J. (2007) Liquid chromatography electron capture dissociation tandem mass spectrometry (LCECD- MS/MS) versus liquid chromatography collision-induced dissociation tandem mass spectrometry (LC-CIDMS/ MS) for the identification of proteins. J. Am. Soc. Mass Spectrom. 18: 891-897.
 
13.
Crown S.B., Antoniewicz M.R. (2013) Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies. Metab. Eng. 16: 21-32.
 
14.
Eberlin L.S., Dill A.L., Costa A.B., Ifa D.R., Cheng L., Masterson T., Koch M., Ratliff T.L., Cooks R.G. (2010) Cholesterol Sulfate Imaging in Human Prostate Cancer Tissue by Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 82: 3430-3434.
 
15.
Eikel D., Vavrek M., Smith S., Bason C., Yeh S., Korfmacher W.A., Henion J.D. (2011) Liquid extraction surface analysis mass spectrometry (LESA-MS) as a novel profiling tool for drug distribution and metabolism analysis: the terfenadine example: LESA-MS distribution analysis of terfenadine. Rapid Commun. Mass Spectrom. 25: 3587- 3596. Eng J.K., McCormack A.L., Yates III J.R. (1994) An approach.
 
16.
to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5: 976-989.
 
17.
Fernie A.R., Aharoni A., Willmitzer L., Stitt M., Tohge T., Kopka J., Carroll A.J., Saito K., Fraser P.D., DeLuca V. (2011) Recommendations for Reporting Metabolite Data. Plant Cell 23: 2477-2482.
 
18.
Ficarro S.B., McCleland M.L., Stukenberg P.T., Burke D.J., Ross M.M., Shabanowitz J., Hunt D.F., White F.M. (2002) Phosphopro eome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotech. 20: 301-305.
 
19.
Giddings J.C. (1987) Concepts and comparisons in multidimensional separation. J. High Resolut. Chromatogr. 10: 319-323.
 
20.
Goodacre R., Vaidyanathan S., Dunn W.B., Harrigan G.G., Kell D.B. (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22: 245-252.
 
21.
Görg A., Weiss W., Dunn M.J. (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4: 3665-3685. Grimsrud P.A., Os D. den, Wenger C.D., Swaney D.L., Schwartz D., Sussman M.R., Ane J.-M., Coon J.J. (2010) Large-Scale Phosphoprotein Analysis in Medicago trunca tula Roots Provides Insight into in Vivo Kinase Activity in Legumes. Plant Physiol. 152: 19-28.
 
22.
Gygi S.P., Rist B., Gerber S.A., Turecek F., Gelb M.H., Aebersold R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotech. 17: 994-999.
 
23.
Hamdan M., Righetti P.G. (2005) In: Proteomics Today: Protein Assessment and Biomarkers Using Mass Spectrometry, 2D Electrophoresis, and Microarray Technology, Hoboken: John Wiley & Sons: 209-224.
 
24.
Han X., Aslanian A., Yates J.R. (2008) Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12: 483-490.
 
25.
Henzel W.J., Watanabe C., Stults J.T. (2003) Protein identification: the origins of peptide mass fingerprinting. J. Am. Soc. Mass Spectrom. 14: 931-942.
 
26.
Hirano H., Islam N., Kawasaki H. (2004) Technical aspects of functional proteomics in plants. Phytochemistry 65: 1487- 1498.
 
27.
Hjernø K. (2007) Protein Identification by Peptide Mass Fingerprinting. In: Mass Spectrometry Data Analysis in Proteomics. Ed. R. Matthiesen, Humana Press: 61-75.
 
28.
Hofmann U., Maier K., Niebel A., Vacun G., Reuss M., Mauch K. (2008) Identification of metabolic fluxes in hepatic cells from transient13C-labeling experiments: Part I. Experimental observations. Biotechnol. Bioeng. 100: 344-354.
 
29.
Kelleher N.L., Lin H.Y., Valaskovic G.A., Aaserud D.J., Fridriksson E.K., McLafferty F.W. (1999) Top Down versus Bottom Up Protein Characterization by Tandem High-Resolution Mass Spectrometry. J. Am. Chem. Soc. 121: 806-812.
 
30.
Knochenmuss R. (2012) MALDI Ionization Mechanisms: An Overview. In: Electrospray and MALDI Mass Spectrometry. Ed. R.B. Cole, Hoboken: John Wiley & Sons, Inc.: 147-183.
 
31.
Lewis G.D., Farrell L., Wood M.J., Martinovic M., Arany Z., Rowe G.C., Souza A., Cheng S., McCabe E.L., Yang E., et al. (2010) Metabolic Signatures of Exercise in Human Plasma. Sci. Transl. Med. 2: 33ra37.
 
32.
Li H., Wolff J.J., Van Orden S.L., Loo J.A. (2014) Native Top-Down Electrospray Ionization-Mass Spectrometry of 158 kDa Protein Complex by High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 86: 317-320.
 
33.
Liebeke M., Dörries K., Meyer H., Lalk M. (2012) Metabolome Analysis of Gram-Positive Bacteria such as Staphylococcus aureus by GC-MS and LC-MS. In: Functional Genomics. Ed. M. Kaufmann, C. Klinger, New York: Springer: 377-398.
 
34.
Lin D., Tabb D.L., Yates J.R. (2003) Large-scale protein identification.
 
35.
using mass spectrometry. Biochim. Biophys. Acta 1646: 1-10.
 
36.
Liu Z., Schey K.L. (2005) Optimization of a MALDI TOF-TOF mass spectrometer for intact protein analysis. J. Am. Soc. Mass Spectrom. 16: 482-490.
 
37.
Loo J.A., Edmonds C.G., Smith R.D. (1990) Primary sequence information from intact proteins by electrospray ionization tandem mass spectrometry. Science 248: 201-204.
 
38.
Loo J.A., Edmonds C.G., Smith R.D. (1991) Tandem mass spectrometry of very large molecules: serum albumin sequence information from multiply charged ions formed by electrospray ionization. Anal. Chem. 63: 2488-2499.
 
39.
Macek B., Waanders L.F., Olsen J.V., Mann M. (2006) Topdown protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol. Cell. Proteomics MCP 5: 949-958.
 
40.
Maier K., Hofmann U., Reuss M., Mauch K. (2008) Identification of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: Part II. Flux estimation. Biotechnol. Bioeng. 100: 355-370.
 
41.
Matthiesen R., Mutenda K. (2007) Introduction to proteomics. In: Mass Spectrometry Data Analysis in Proteomics. Ed. R. Matthiesen, Humana Press: 1-4.
 
42.
Medzihradszky K.F., Zhang X., Chalkley R.J., Guan S., McFarland M.A., Chalmers M.J., Marshall A.G., Diaz R.L., Allis C.D., Burlingame A.L. (2004) Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS).
 
43.
Mol. Cell. Proteomics MCP 3: 872-886.
 
44.
Mohler R.E., Dombek K.M., Hoggard J.C., Young E.T., Synovec R.E. (2006) Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry Analysis of Metabolites in Fermenting and Respiring Yeast Cells. Anal. Chem. 78: 2700-2709.
 
45.
Nakagami H., Sugiyama N., Ishihama Y., Shirasu K. (2012) Shotguns in the Front Line: Phosphoproteomics in Plants. Plant Cell Physiol. 53: 118-124.
 
46.
Nesvizhskii A.I., Keller A., Kolker E., Aebersold R. (2003).
 
47.
A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry. Anal. Chem. 75: 4646-4658.
 
48.
Neuhoff V., Stamm R., Eibl H. (1985) Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: A systematic analysis. Electrophoresis 6: 427-448.
 
49.
Neverova I., Van Eyk J.E. (2005) Role of chromatographic techniques in proteomic analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 815: 51-63.
 
50.
Newton R.P., Brenton A.G., Smith C.J., Dudley E. (2004) Plant proteome analysis by mass spectrometry: principles, problems, pitfalls and recent developments. Phytochemistry 65: 1449-1485.
 
51.
Nielsen J., Oliver S. (2005) The next wave in metabolome analysis. Trends Biotechnol. 23: 544-546.
 
52.
Parson W.B., Koeniger S.L., Johnson R.W., Erickson J., Tian Y., Stedman C., Schwartz A., Tarcsa E., Cole R., Van Berkel G.J. (2012) Analysis of chloroquine and metabolites directly from whole-body animal tissue sections by liquid extraction surface analysis (LESA) and tandem mass spectrometry: Chloroquine in tissue sections measured by LESA-MS/MS. J. Mass Spectrom. 47: 1420-1428.
 
53.
Patel V.J., Thalassinos K., Slade S.E., Connolly J.B., Crombie A., Murrell J.C., Scrivens J.H. (2009) A Comparison of La beling and Label-Free Mass Spectrometry-Based Proteomics Approaches. J. Proteome Res. 8: 3752-3759.
 
54.
Perkins D.N., Pappin D.J.C., Creasy D.M., Cottrell J.S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567.
 
55.
Rabilloud T., Chevallet M., Luche S., Lelong C. (2010) Twodimensional gel electrophoresis in proteomics: Past, present and future. J. Proteomics 73: 2064-2077.
 
56.
Ramautar R., Somsen G.W., de Jong G.J. (2009) CE-MS in metabolomics. Electrophoresis 30: 276-291.
 
57.
Resing K.A., Ahn N.G. (2005) Proteomics strategies for protein identification. FEBS Lett. 579: 885-889.
 
58.
Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., Seraphin B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotech 17: 1030-1032.
 
59.
Roberts L.D., Souza A.L., Gerszten R.E., Clish C.B. (2012) Targeted Metabolomics. In: Current Protocols in Molecular Biology. Ed. F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl, Hoboken: John Wiley & Sons, Inc.
 
60.
Roepstorff P., Fohlman J. (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11: 601.
 
61.
Ross P.L., Huang Y.N., Marchese J.N., Williamson B., Parker K., Hattan S., Khainovski N., Pillai S., Dey S., Daniels S., et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics MCP 3: 1154-1169.
 
62.
Ruh H., Salonikios T., Fuchser J., Schwartz M., Sticht C., Hochheim C., Wirnitzer B., Gretz N., Hopf C. (2013).
 
63.
MALDI imaging MS reveals candidate lipid markers of polycystic kidney disease. J. Lipid Res. 54: 2785-2794.
 
64.
Sadygov R.G., Yates J.R. (2003) A Hypergeometric Probability Model for Protein Identification and Validation Using Tandem Mass Spectral Data and Protein Sequence Databases. Anal. Chem. 75: 3792-3798.
 
65.
Sadygov R.G., Cociorva D., Yates J.R. (2004) Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book. Nat. Meth. 1: 195-202.
 
66.
Sarma A.D., Oehrle N.W., Emerich D.W. (2008) Plant protein isolation and stabilization for enhanced resolution of twodimensional polyacrylamide gel electrophoresis. Anal. Biochem. 379: 192-195.
 
67.
Scheler C., Lamer S., Pan Z., Li X.P., Salnikow J., Jungblut P. (1998) Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization- mass spectrometry (MALDI-MS). Electrophoresis 19: 918-927.
 
68.
Seeley E.H., Caprioli R.M. (2011) MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol. 29: 136-143. Sikorska K., Rodziewicz P. (2011) Apekty metodyczne badań proteomów roślinnych. In: Na pograniczu chemii i biologii, tom XXVI. Ed. Barciszewski J., Koroniak H., Poznań: Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza: 163-192.
 
69.
Siuti N., Kelleher N.L. (2007) Decoding protein modifications using top-down mass spectrometry. Nat. Meth. 4: 817-821.
 
70.
Smith R. (2009) Two-Dimensional Electrophoresis: An Overview. In: Two-Dimensional Electrophoresis Protocols. Ed. D. Sheehan, R. Tyther, New York: Humana: 2-17.
 
71.
Smith L.M., Kelleher N.L., Linial M., Goodlett D., Langridge- Smith P., Ah Goo Y., Safford G., Bonilla L., Kruppa G.,Zubarev R., et al. (2013) Proteoform: a single term describing protein complexity. Nat. Meth. 10: 186-187.
 
72.
Sommerer N., Centeno D., Rossignol M. (2007) Peptide Mass Fingerprinting. In: Plant Proteomics: Methods and Protocols. Ed. Thiellement H., Zivy M., Damerval C., Mechin V., Totowa: Humana Press: 219-234.
 
73.
Staszków A., Swarcewicz B., Banasiak J., Muth D., Jasiński M., Stobiecki M. (2011) LC/MS profiling of flavonoid glycoconjugates isolated from hairy roots, suspension root cell cultures and seedling roots of Medicago truncatula. Metabolomics 7: 604-613.
 
74.
Steinberg T.H., Jones L.J., Haugland R.P., Singer V.L. (1996) SYPRO Orange and SYPRO Red Protein Gel Stains: One- Step Fluorescent Staining of Denaturing Gels for Detection of Nanogram Levels of Protein. Anal. Biochem. 239: 223-237.
 
75.
Swanson S.K., Washburn M.P. (2005) The continuing evolution of shotgun proteomics. Drug Discov. Today 10: 719-725.
 
76.
Syka J.E.P., Coon J.J., Schroeder M.J., Shabanowitz J., Hunt D.F. (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101: 9528-9533.
 
77.
Szyperski T. (1995) Biosynthetically Directed Fractional 13Clabeling of Proteinogenic Amino Acids. An Efficient Analytical Tool to Investigate Intermediary Metabolism. Eur. J. Biochem. 232: 433-448.
 
78.
Takats Z. (2004) Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 306: 471-473.
 
79.
Thelen J.J. (2007) Introduction to proteomics: A brief historical perspective on contemporary approaches. In: Plant Proteomics. Springer: 1-13.
 
80.
Thiede B., Höhenwarter W., Krah A., Mattow J., Schmid M., Schmidt F., Jungblut P.R. (2005) Peptide mass fingerprinting. Meth. San Diego Calif. 35: 237-247.
 
81.
Tipton J.D., Tran J.C., Catherman A.D., Ahlf D.R., Durbin K.R., Lee J.E., Kellie J.F., Kelleher N.L., Hendrickson C.L., Marshall A.G. (2012) Nano-LC FTICR Tandem Mass Spectrometry for Top-Down Proteomics: Routine Baseline Unit Mass Resolution of Whole Cell Lysate Proteins up to 72 kDa. Anal. Chem. 84: 2111-2117.
 
82.
Tran J.C., Zamdborg L., Ahlf D.R., Lee J.E., Catherman A.D., Durbin K.R., Tipton J.D., Vellaichamy A., Kellie J.F., Li M., et al. (2011) Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480: 254- Weckwerth W. (2003) Metabolomics in systems biology. Annu. Rev. Plant Biol. 54: 669-689.
 
83.
Welthagen W., Shellie R.A., Spranger J., Ristow M., Zimmermann R., Fiehn O. (2005) Comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC-TOF) for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1: 65-73.
 
84.
Wilkins M.R., Pasquali C., Appel R.D., Ou K., Golaz O., Sanchez J.C., Yan J.X., Gooley A.A., Hughes G., Humphery- Smith I., et al. (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnol. Nat. Publ. Co. 14: 61-65.
 
85.
Winograd N. (2005) The Magic of Cluster SIMS. Anal. Chem.
 
86.
77: 142 A – 149 A. Wolters D.A., Washburn M.P., Yates J.R. (2001) An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Anal. Chem. 73: 5683-5690.
 
87.
Yanes O., Woo H.-K., Northen T.R., Oppenheimer S.R., Shriver L., Apon J., Estrada M.N., Potchoiba M.J., Steenwyk R., Manchester M., et al. (2009) Nanostructure Initiator Mass Spectrometry: Tissue Imaging and Direct Biofluid Analysis. Anal. Chem. 81: 2969-2975.
 
88.
Yates J.R. (1998) Mass spectrometry and the age of the proteome. J. Mass Spectrom. 33: 1-19.
 
89.
Yates J.R. (2004) Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33: 297-316.
 
90.
Yates J.R., Ruse C.I., Nakorchevsky A. (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11: 49-79. Zhu W., Smith J.W., Huang C.-M. (2010) Mass Spectrometry- Based Label-Free Quantitative Proteomics. J. Biomed. Biotechnol. ID 840518.
 
91.
Zubarev R.A., Kelleher N.L., McLafferty F.W. (1998) Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process. J. Am. Chem. Soc. 120: 3265-3266.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top