REVIEW PAPER
The correlation of structural features of mature miRNAs with their biological function
 
More details
Hide details
 
Publication date: 2015-10-06
 
 
BioTechnologia 2014;95(3):187-191
 
ABSTRACT
miRNAs are short non-protein coding RNAs, being though a crucial regulators of gene expression of up to 90%
of human genes (Friedmann et al., 2009; Guo et al., 2010; Perron and Provost, 2010; Bartel, 2009; Esquela-Kerscher
and Slack, 2006; Bartel, 2006; Kozomara and Griffiths-Jones, 2011; Selbach et al., 2008). These tiny RNA
molecules tune cell growth, tissue differentiation, cell proliferation, embryonic development, apoptosis and cellular
signaling (Gaur et al., 2007; Godlewski et al., 2012; Kim et al., 2010; Cui et al., 2006). Even slight shift in
miRNA level could lead to significant changes of transcriptome, and in a result of cell phenotype. In the last decade,
over 30 000 mature miRNA sequences were deposited in miRBase (Griffiths-Jones et al., 2006). The function
of many of them have been found and anti-miRNA tools, as potential therapy approach have been designed.
Despite of an enormous data of miRNA, there are still many questions concerning miRNA function to be solved.
Following Francis Crick’s famous statement “If you want to understand function, study structure”, we were
looking for structure of mature miRNAs (Belter et al., 2014).
REFERENCES (28)
1.
Adilakshmi T., Sudol I., Tapinos N. (2012) Combinatorial Action of miRNAs Regulates Transcriptional and Post-Transcriptional Gene Silencing following in vivo PNS Injury. PLOS One 7: e39674.
 
2.
Adhikary M., Ganguli S., Das S.G., Datta A. (2011) Secondary structural analyses of microRNAs and precursors in Pan troglodytes. Int. J. Comp. Biol. 2: 35-37.
 
3.
Bartel D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
 
4.
Bartel D.P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.
 
5.
Belter A., Gudanis D., Rolle K., Piwecka M., Gdaniec Z., Naskret-Barciszewska M.Z., Barciszewski J. (2014) Mature miRNAs form secondary structure, which suggests their function beyond RISC. PLOS One 9: e113848.
 
6.
Chen A.K., Sengupta P., Waki K., van Engelenburg S.B., Ochiya T., Ablan S.D., Freed E.O., Lippincott-Schwartz J. (2014) MicroRNA binding to the HIV-1 Gag protein inhibits Gag assembly and virus production. PNAS 111: E2676-E2683.
 
7.
Cui Q., Yu Z., Purisima E.O., Wang E. (2006) Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Biol. 2: 46.
 
8.
Das A.K., Ganguli S., Gupta S., Datta A. (2011) Secondary structural analysis of microRNA and their precursors in plants. Int. J. Agr. Sci. 3: 62-64.
 
9.
Esquela-Kerscher A., Slack F.J. (2006) Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer 6: 259-269.
 
10.
Friedmann R.C. , Fahr K.K., Burge C.B., Bartel D.P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19: 92-105.
 
11.
Gantier M.P., McCoy C.E., Rusinova I., Saulep D., Wang D., Xu D., Irving A.T., Behlke M.A., Hertzog P.J., Mackay F., Williams B.R.G. (2011) Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucl. Acids Res. 39: 5692-5703.
 
12.
Gaur A., Jewell D.A., Liang Y., Ridzon D., Moore J.H., Chen C., Ambros V.R., Israel M.A. (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 67: 2456- 468.
 
13.
Godlewski J., Nowicki M.O., Bronisz A., Williams S., Stsuki A., Nuovo G., Raychaudhury A., Newton H.B., Chiocca E.A., Lawler S. (2012) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 68: 9125-9130.
 
14.
Griffths-Jones S., Grocock R.J., Van Dongen S., Bateman A., Enright A.J. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucl. Acids Res. 34: D140-D144.
 
15.
Guo H., Ingolia N.T., Weissman J.S., Bartel D.P. (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835-840.
 
16.
Hutvagner G., Zamore P.D. (2002) A microRNA in a multipleturnover RNAi enzyme complex. Science 297: 2056-2060.
 
17.
Khvorova A., Reynolds A., Jayasena S.D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115: 209-216.
 
18.
Kim H., Huang W., Jiang X., Pennicooke B., Park P.J., Johnson M.D. (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc. Natl. Acad. Sci. USA 107: 2183-2188.
 
19.
Kozomara A., Griffiths-Jones S. (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucl. Acids Res. 39: D152-D157.
 
20.
Liu J., Carmell M.A., Rivas F.V., Marsden C.G., Thomson J.M., Song J.J., Hammond S.M., Joshua-Tor L., Hannon G.J. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437-1441.
 
21.
Maiti M., Nauwelaerts K., Lescrinier E., Schuit F.C., Herdewijn.
 
22.
P. (2010) Self-complementary sequence context In mature miRNAs. Biochem. Biophys. Res. Commun. 392: 572-576.
 
23.
Mashima T., Matsugami A., Nishikawa F., Nishikawa S., Katahira M. (2009) Unique quadruplex structure and interaction of an RNA aptamer against bovine prion protein. Nucl. Acids Res. 37: 6249-6258.
 
24.
Musier-Forsyth K., Schimmel P. (1993) Aminoacylation of RNA oligonucleotides: minimalist structures and origin of specificity. FASEB J. 7(2): 282-289.
 
25.
Perron M.P., Provost P. (2010) Protein interactions and complexes in human microRNA biogenesis and function. Front Biosci. 13: 2537-2547.
 
26.
Popenda M., Szachniuk M., Antczak M., Purzycka K.J., Lukasik P., Bartol N., Blazewicz J., Adamiak R.W. (2012) Automated 3D structure composition for large RNAs. Nucl. Acids Res. 40: e112.
 
27.
Selbach M., Schwanhausser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58-63.
 
28.
Zardo G., Ciolfi A., Vian L., Starnes L.M., Billi M., Racanicchi S., Maresa C., Fizi F., Travaglini L., Nouera N., Mancini M., Nani M., Cimino G., Lo-Coco F., Grignani F., Nervi C. (2012) Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 119: 4034-4046.
 
eISSN:2353-9461
ISSN:0860-7796
Journals System - logo
Scroll to top