RESEARCH PAPER
Phosphate-induced changes in fatty acid biosynthesis in Chlorella sp. KS-MA2 strain
More details
Hide details
1
Universiti Malaysia Terengganu, School of Fundamental Sciences, Center for Fundamental and Liberal Education,
Kuala Terengganu, Malaysia
2
Universiti Malaysia Terengganu, Institute of Marine Biotechnology, Kuala Terengganu, Malaysia
Submission date: 2016-04-21
Final revision date: 2016-09-04
Acceptance date: 2016-09-22
Publication date: 2017-01-13
BioTechnologia 2016;97(4):295-304
KEYWORDS
TOPICS
ABSTRACT
Phosphate is involved in fatty acid biosynthesis in microalgae cells. The influence of phosphate concentrations on polyunsaturated fatty acids’ profile, elongation, and desaturation of fatty acids chains during their biosynthesis
still remains unclear. Protein ketoacyl-ACP synthase-I (KAS-1 ) is required for the addition of malonyl-CoA for the elongation of butyryl-ACP from a 4- to 14-carbon chain. The omega-6 (ω-6 FAD ) and omega-3 desaturases (ω-3
FAD ) are involved in the insertion of double bonds into the pre-formed fatty acid chains. This study reports the effect of phosphate concentrations on the growth, fatty acid content, and level of KAS-1, ω-6 FAD, and ω-3 FAD
transcripts in Chlorella KS-MA2 strain at the stationary growth phase. Phosphate was tested at concentrations 9, 18, 36, and 72 μM and the fatty acid content was analyzed using gas chromatography. Gene expression levels
were measured using quantitative real-time-PCR. Results showed that cell growth, amount of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFAs) did not significantly
(P > 0.05) differ among tested treatments. The highest concentration of α-linolenic acid and the expression level of ω-3 FAD were recorded with 72 μM of phosphate in culture medium. The KAS-1 and ω-6 FAD transcripts
levels decreased when the concentration of phosphate was below 36 μM. Phosphate in F/2 medium was sufficient to enhance the biosynthesis of major fatty acids in Chlorella sp.
REFERENCES (36)
1.
Abu-Ghosh S., Fixler D., Dubinsky Z., Iluz D. (2016) Flashing light in microalgae biotechnology. Bioresource Technol. 203: 357-363.
2.
Cha T.S., Chen J.W., Goh E.G., Aziz A., Loh S.H. (2011) Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application. Bioresource Technol. 102: 10633-10640.
3.
Chen T., Liu J., Guo B., Ma X., Sun P., Liu B., Chen F. (2015) Light attenuates lipid accumulation while enhancing cell proliferation and starch synthesis in the glucose-fed oleaginous Chlorella zofingiensis. Sci. Rep. 5: 14936. Doi: 10.1038/srep14936.
4.
Cheirsilp B., Torpee S. (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition?: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technol. 110: 510-516.
5.
Chen G.Q., Chen F. (2006) Growing phototrophic cells without light. Biotechnol. Lett. 28: 607-616.
6.
Dean A.P., Nicholson J.M., Sigee D.C. (2008) Impact of phosphorus quota and growth phase on carbon allocation in Chlamydomonas reinhardtii: an FTIR microspectroscopy study. Eur. J. Phycol. 43(4): 345-354.
7.
Duong V. T., Ahmed F., Thomas-Hall S.R., Quigley S., Nowak E., Schenk P.M. (2015) High protein- and high lipid-producing microalgae from Northern Australia as potential feedstock for animal feed and biodiesel. Front Bioeng. Biotechnol. 3: 1-7. Doi: 10.3389/fbioe.2015.00053.
8.
Feng P., Deng Z., Fan L., Hu Z. (2012) Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J. Biosci. Bioengineer. 114(4): 405-410.
9.
Fidalgo J.P., Cid A., Torres E., Sukenik A., Herrero C. (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166: 105-116.
10.
George B., Pancha I., Desai C., Chokshi K., Paliwal C., Ghosh T., Mishra S. (2014) Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus- a potential strain for bio-fuel production. Bioresour. Technol. 171: 367-374.
11.
Ghyoot C., Gypens N., Flynn K.J., Lancelot C. (2015) Modelling alkaline phosphatase activity in microalgae under orthophosphate limitation: the case of Phaeocytis globose. J. Planton Res. 37(5): 869-885.
12.
Guillard R.R.L., Ryther J.H. (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 8: 229-239.
13.
Jusoh M., Loh S.W., Chuah T.S., Aziz A, Cha T.T. (2015) Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res. 9: 14-20.
14.
Kamalanathan M., Pierangelini M., Shearman L.A., Gleadow R., Beardall J. (2015) Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J. Appl. Phycol. Doi: 10.1007/s10811-015-0726-y.
15.
Kainou K., Kamisaka Y., Kimura K., Uemura, H. (2006) Isolation of Δ12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and α-linolenic acids in Saccharomyces cerevisiae. Yeast 23: 605-612. Doi: 10.1002/yea.1378.
16.
Khozin-Goldberg I., Cohen Z. (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701.
17.
Larsdotter K. (2006). Wastewater treatment with microalgae - A literature review. VATTEN. 62: 31-38.
18.
Liu J., Yuan C., Hu G., Li F. (2012) Effects of light intensity on the growth and lipid accumulation of microalgae Scenedesmus sp. 11-1 under nitrogen limitation. Appl. Biochem. Biotechnol. 166: 2127-2137.
19.
Livak K.J., Schmittgen T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2))Ct method. Appl. Biosystem. 25: 402-408.
20.
Mujtaba G., Choi W., Lee C.G., Lee K. (2012) Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technol. 123: 279-283.
21.
Powell N., Shilton A.N., Pratt S., Chisti Y. (2008) Factors influencing luxury uptake of phosphorous by microalgae in waste stabilization ponds. Environ. Sci. Technol. 42: 5958-5962.
22.
Prochazkova G., Branyikova I., Zachleder V., Branyik T. (2014) Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J. Appl. Phycol. 26: 1359-1377.
23.
Rawat I., Kumar R.R., Mutanda T., Bux F. (2013) Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy, 103: 444-467.
24.
Rasala B.A., Mayfield S.P. (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Res. 123(3): 227-239.
25.
Romano S., Schulz-Vogt H.N., González J.M. Bondarev V. (2015) Phosphate limitation induces drastic physiological changes, virulence related gene expression and secondary metabolite production in strain Pseudovibrio sp. FOBEG1. Appl. Environ. Microbiol. 81 (10): 3518-3528. Doi: 10.1128/AEM.04167-14.
26.
Ruiz-Lopez N., Usher S., Syanova O.V., Napier J.A., Haslam R.P. (2015) Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA. Appl Microbiol Biotechnol (2015) 99:143-154. DOI 10.1007/s00253-014-6217-2.
27.
Schmittgen T.D, Livak K.J. (2008) Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 3, 1101-1108.
28.
Sharma K.K., Schuhmann H., Schenk P.M. (2012) High lipid induction in Microalgae for biodiesel production. Energies. 5: 1532-1553. Doi: 10.3390/en5051532.
29.
Shen X.F., Liu J.J., Chauhan A.S., Hu H., Ma L.L., Lam P.K.S., Raymond J., Zeng R.J. (2016) Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Research 17:261-267. 2016.
30.
Tan Y., Lin J. (2011) Biomass production and fatty acid profile of a Scenedesmus rubescens-like microalga. Bioresource Technol. 102: 10131-10135.
31.
Torres C.A.P., Bucio J.L. Estrella L.H. (2009) Low phosphate signalling induces changes in cell cycle gene expression by increasing auxin sensitivity in the Arabidopsis root system. Plant Signal. Behaviour. 4(8): 781-783.
32.
Wacker A., Piepho M., Harwood J.L., Guschina I.A., Arts M.T. (2016) Light-induced changes in fatty acid profile in specific lipid classes in several freshwater phytoplankton species. Front. Plant Science. 7: 264. Doi: 10.3389/fpls.2016.00264.
33.
Wang M., Chen H., Gu Z., Zhang H., Chen W., Chen Y.Q. (2013) ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use. Appl Microbiol. Biotechnol. 97(24): 10255-10262. Doi: 10.1007/s00253-013-5336-5.
34.
Xin L., Hong Y.H., Ke, G., Ying X.S. (2010) Effect of different nitrogen and phosphorus concentrations on the growth, nutrient uptake and lipid accumulation of a freshwater microalgae Scenedesmus sp. Bioresource Technol. 101: 5494-5500.
35.
Ying Y.S., Chang H.W. (2009) The optimal growth conditions for the biomass production of Isochrysis galbana and the effect that phosphorus, Zn2+, CO2 , and light intensity have on the biochemical composition of Isochrysis galbana and the activity of extracellular CA. Biotechnol. Bioprocess Engineer. 14: 225-231.
36.
Zhang Y., Wang H., Zhang J., Hu Y., Zhang L., Wu X., Su X., Li T., Zou X., Liang B. (2016) The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans. Biochim Biophys Acta. 1861(4): 310-9. Doi: 10.1016/j.bbalip.2016.01.009.